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Введение
Актуальность проблемы. Вопрос расчёта строительных конструкций и их

элементов с учётом свойств материала, максимально приближенных к реальных
телам, весьма изучен и реализован в виде многочисленных программных комплексов, как
правило, на основе метода конечных элементов (далее —МКЭ), таких, как ANSYS, Abaqus,
SolidWorks и т. д. Существует ряд задач, которые вызывают определённые трудности с их
моделированием, как правило, это задачи с учётом реологии материала при переменном
во времени нагружении: циклическое нагружение, разгрузка конструкции при снятии
внешнего нагружения, исследование необратимых деформаций и т. д. Обязательный
учёт реологических свойств требует расчёт элементов строительных конструкций
из полимерных материалов, поскольку они обладают рядом свойств, требующих к ним
особых подходов по сравнению с подавляющим большинством «классических» материалов.

Полимерные материалы в способны в значительной степени изменять значения
своих физико-механических параметров под воздействием на них различных факторов.
Наиболее распространённым фактором является изменение температуры конструкций
и их элементов. При это полимеры могут в разы изменять значения, например, модуля
упругости. Аналогичное изменение происходит и с реологическими характеристиками.
Ионизирующее излучение, при этом, может как улучшать свойства полимеров, так и
вызывать их деструкцию. Подобное изменение может происходить при введении в полимер
добавок.

Второй яркой особенностью являются весьма большие по величине деформации
ползучести, которые способны превышать упругие деформации. Развитие столь
выраженной ползучести приводит, с одной стороны, к снижению общего уравнения
напряжений в конструкции и её элементах (явление релаксации напряжений), с другой,
достигается это развитием перемещений отдельных частей конструкции, в том числе и
ростом прогибов.

Проведение исследований по изучению влияния внешних факторов на материал и его
реологию удобно на полимерах вследствие гораздо более быстро протекающих процессов
по сравнению с иными строительными материалами, например, бетоном, поскольку многие
закономерности имеют аналогичный с полимерами вид, что даёт возможность применения
апробированных на полимерах исследований к бетонам.

Резюмируя выше сказанное, можно утверждать, что в настоящее время весьма
актуально исследование не только изменения свойств материалов, из которых
изготавливаются конструкции и их элементы, под действием различных внешних и
внутренних факторов, но и развитие методов расчёта подобных конструкций на прочность,
деформативность и т. п. при развитии неоднородности и наличию выраженной реологии,
а также создание расчётных комплексов, компенсирующих недостатки распространённых
специализированных пакетов прикладных программ, основанных на МКЭ.

Степень разработанности темы.
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Развитием теории ползучести, в том числе применительно к толстостенным
конструкциям, занимались многие учёные: В.И.Андреев, А.А.Аскадский, В.Ф.Бабич,
В.Л.Бажанов, И.И. Гольденблат, Г.И. Гуревич, О. Зенкевич, Л.М.Качанов, А.Л.Рабинович,
Ю.Н.Работнов, О.К.Морачковский, Ю.В.Немировский, Р.А.Турусов, А.П.Янковский
и др.

Литературный обзор показал, что вопрос нелинейной ползучести часто игнорируется
или рассматривается в некоторых частных задачах, например, для линейного
напряжённого состояния, что вызывает значительные трудности по изучению подобных
задач применительно к двумерному или объёмному напряжённым состояниям.

Проблема определения напряжённо–деформированного состояния (далее —
НДС) конструкций и их элементов, обладающих значительными деформациями
ползучести, заключается в трудностях одновременного учёта изменения значений
физико–механических параметров материала (от температуры, уровня напряжения,
наличия иных физических полей и добавок и т. п.) не только в упругой работе, но,
особенно, в условиях термовязкоупругости.

В настоящей диссертационной работе используется нелинейное обобщённое уравнение
Максвелла в форме, предложенной Г.И. Гуревичем (далее — уравнение Максвелла–
Гуревича). Благодаря малой распространённости уравнения Максвелла–Гуревича
отсутствует во всех популярных основанных на МКЭ пакетах прикладных программ,
используемых для моделирования НДС, в том числе, с учётом реологии. В самих же
комплексах реологические модели весьма ограничены количественно и, как правило,
ориентированы на применение с определённым материалов.

Резюмируя вышесказанное, была поставлена цель работы: теоретическое обобщение
актуальной проблемы моделирования НДС элементов строительных конструкций в
упругих и вязкоупругих толстостенных цилиндрических непрерывно неоднородных телах
при статических нагрузках и полях вынужденных деформаций, разработке расчётных
модулей для современных программных комплексов и решение на их основе ряда задач,
имеющих важное хозяйственное значение.

Задачи работы:
1. Развитие на основе современных методов анализа экспериментальных данных

методик определения физико–механических параметров (на примере полимеров и бетона),
входящих в нелинейное уравнение связи (состояния), как функций, зависящих от уровня
действующих физических полей и от наличия добавок в материале конструкции.

2. Совершенствование универсального обобщённого МКЭ для решения задач теории
упругости и ползучести неоднородных цилиндров, а также исследование влияния на НДС
непрерывно неоднородных тел факторов, таких как — поля вынужденных деформаций,
наличие добавок в материале конструкции.

3. Использование полученных функциональных зависимостей изменения физико–
механических параметров материала от различных факторов для разработки методов
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оптимизации конструкции путём моделирования искусственной неоднородности на основе
различных теорий прочности.

4. Разработка и реализации программных модулей на основе вариационно–разностной
постановки двумерной задачи моделирования НДС железобетонной оболочки под
действием статических нагрузок и физических полей.

5. Разработка нового прямоугольного конечного элемента (далее — КЭ) путём
непосредственного аналитического интегрирования аппроксимирующих функций формы,
учитывающего вынужденные деформации, представленные температурным полем и
реологией материала. Апробация и сравнение результатов решения частных задач при
помощи полученного КЭ с известными решениями.

6. Разработки модели двумерной задачи определения НДС термовязкоупругого
цилиндра, находящегося под воздействием переменного температурного поля при
произвольных граничных условий на торцевых поверхностях и её реализация в
программных модулях.

7. Совершенствование модели длительной прочности адгезионного соединения с
учётом развития сдвиговых деформаций ползучести полимерного связующего.

8. Выполнение экспериментальной оценки длительной прочности модели
адгезионного соединения.

Научная новизна работы заключается в следующих основных результатах,
выносимых на защиту:

1. Впервые на основе современных методов анализа экспериментальных данных
разработана методика определения физико-механических параметров, входящих в
нелинейное уравнение связи Максвелла–Гуревича, как функции от уровня действующих
физических полей и от наличия добавок в материале конструкции.

2. Реализовано в виде пакета прикладных программ решение задач теории упругости
и ползучести неоднородных цилидров, а также проведен анализ влияния на НДС
непрерывно неоднородных тел факторов, таких как — поля вынужденных деформаций,
наличие добавок в материале конструкции.

3. Впервые получены на основе четырёх теорий прочности функциональные
зависимости изменения физико-механических параметров материала от уровня добавки в
композит с целью создания равнонапряжённого и равнопрочного цилиндра.

4. Разработана и реализована на основе вариационно-разностной постановки методика
решения, алгоритм и программа расчёта на ЭВМ двумерной задачи моделирования
НДС железобетонной оболочки при произвольных граничных условиях на торцевых
поверхностям под действием статическим нагрузок и физических полей.

5. Предложен и реализован в пакете программных модулей прямоугольный КЭ при
помощи непосредственного интегрирования заданной функции формы, вектор нагрузок
которого содержит вклад вынужденных деформаций для практического применения при
решении задач ползучести.
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6. Разработана и рализована модель задачи в двумерной постановке по определению
НДС неоднородного цилиндра, извлекаемого из экструдера с учётом теплообмена на
границе с окружающей средой.

7. Впервые проведено моделирование длительной прочности адгезионного соединения
в двумерной постановке в условиях ползучести с учётом развития сдвиговых деформаций
ползучести полимерного связующего.

Теоретическая значимость работы заключается в том, что:
— Развит метод моделирования НДС толстостенных неоднородных цилиндров из

композитных полимерных материалов с учетом нелинейной ползучести при термосиловом
воздействии.

— Доказано, что полученные системы разрешающих уравнений для толстостенных
цилиндров позволяют решать широкий круг задач данного раздела строительной механики
и механики полимеров.

— Разработанные алгоритмы при незначительной модификации могут быть
применены к другим, не рассмотренным в диссертации объектам, например, тонкостенных
цилиндрическим оболочкам.

— Создании двумерной модели адгезионного соединения, позволяющей производить
оценку его длительной прочности.

Практическое значение работы:
1. Разработан и представлен алгоритм и программное обеспечение для обработки

кривых ползучести и релаксации на основе уравнения Максвелла–Гуревича. На примере
вторичного поливинилхлорида (далее — ПВХ), полиэтилена высокой плотности (далее
— ПЭВП), эпоксидного связующего ЭДТ–10 доказано высокое качество аппроксимации
экспериментальных кривых. Предложено использование разработанной методики для
поиска физико–механических параметров, входящих в уравнение Максвелла–Гуревича,
для иных материалов на примере бетона.

2. Разработан и внедрен пакет прикладных программ в среде Octave (MatLab)
для расчёта на ползучесть толстостенных стержней при использовании произвольных
граничных условий.

3. При помощи разработанного пакета прикладных программ решена практически
важная задача по оценке в изделии остаточных напряжений, возникающих вследствие
различного контакта с окружающей средой после выхода из экструдера, и, как следствие,
возникновение неоднородности в толще тела.

4. Разработан и внедрен пакет прикладных программ в среде Octave (MatLab)
для оценки длительной прочности адгезионного соединения системы адгезив-субстрат
на нормальный отрыв. Представлено существенное отличие между результатами,
полученными на моделях НДС иными авторами и результатов, приведённым в настоящей
диссертационной работе.
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5. Экспериментальные результаты оценки длительной прочности адгезионного
соединения подтвердили работоспособность предложенной в диссертационной работе
модели с учётом развития деформаций ползучести в адгезиве на кратковременных
промежутках (в пределах 1 суток).

Методология и методы исследования. Исследования проведены при помощи
численных и численно–аналитических методов. Непосредственная задача определения
НДС тостостенных цилиндров производилось при помощи МКЭ с применением
программного комплекса Octave (MatLab). Для оценки достоверности результатов
также применялся метод конечных разностей (далее — МКР). Некоторые частные модели
адгезионного соединения в упругой постановке апробированы при помощи программного
комплекса ANSYS.

Положения, выносимые на защиту:
1. Методика определения физико–механических параметров материала, входящих в

нелинейное уравнение Максвелла–Гуревича;
2. Комплекс мер по улучшению точности модельных задач (оптимизация шага

времени, оптимизация положения центра тяжести КЭ и т. д.).
3. Разработанный прямоугольного КЭ, учитывающий компоненты вынужденных

деформаций.
4. Результаты решения задач по поиску оптимального изменения физико–

механических параметров с целью создания равнонапряженного и равнопрочного
цилиндра.

5. Результаты проведённого двумерного моделирования адгезионного соединения с
учётом развития сдвиговых деформаций ползучести.

6. Результаты изменения длительной прочности адгезионного соединения при
различных температурных режимах.

7. Результаты внедрения диссертационного исследования в производство.
Достоверность полученных результатов обеспечивается использованием

фундаментальных теоретических положений строительной механики и механики
полимеров, апробированных методов теории расчета конструкций и их элементов
из композиционных полимеров, полимербетона, бетона, изложенных в нормативной
литературе. Обоснованность полученных результатов подтверждается достаточным
объемом экспериментальных данных, взятых из рецензируемых источников в открытой
печати, использованием фундаментальных законов механики сплошной среды в упругой
и вязкоупругой постановках, сравнением полученных автором результатов с известными
решениями.

Личный вклад автора состоит в:
1. Формулировке научной проблемы и основных теоретических положений к решению

задач для неоднородного цилиндра при термосиловом воздействии.
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2. Разработке методологии определения физико-механических параметров материала,
входящих в уравнение состояния Максвелла–Гуревича, путём поиска минимума функции
отклонения теоретической кривой от экспериментальных данных.

3. Разработке прямоугольного конечного элемента, путём непосредственного
интегрирования функций формы, с учётом вклада вынужденных деформаций.

4. В постановке и реализации двумерной модели адгезионного соединения,
учитывающего развитие сдвиговых деформаций ползучести.

Апробация работы. Основные моменты работы отражены в печатных и
электронных публикациях [43, 44, 45, 67, 73, 74, 76, 77, 78, 79, 81, 83, 84, 86, 87,
88, 148, 153, 154, 155, 158, 165, 166, 167, 168, 170], материалах конференций (Новые
полимерные композиционные материалы: материалы III, IV, V, VIII, XIII—XVI
международных научно–практических конференций, КБГУ, Нальчик, Строительство—
2014–2015, РГСУ, Ростов–на–Дону, Строительство и архитектура — 2017, ДГТУ,
Ростов–на–Дону, Актуальные проблемы науки и техники — 2022, ДГТУ, Ростов–на–
Дону, Современные строительные материалы, технологии и конструкции: материалы
Международной научно–практической конференции, посвященной 95–летия ФГБОУ
ВПО ГГНТУ им. акад. М.Д.Миллионщикова) [62, 72, 75, 80, 82, 85, 156, 157], XIII
Международной научной конференции по архитектуре и конструкциям (Сингапур,
2020 г.) [210], Пятьдесят шестом научном Межвузовском семинаре «Геометрия и расчет
тонких оболочек неканонической формы» (Москва, РУДН, 2023 г.) [101], а также в
изданиях, входящих в базы SCOPUS/Web of Science [184, 186, 187, 207, 208, 209, 211, 212,
213, 214, 215, 216, 229, 233, 234, 235].

Внедрение результатов работы. Имеются 5 свидетельств о регистрации программ
ЭВМ [94, 99, 100, 113, 114].

Структура и объём работы. Работа состоит из введения, шести глав, основных
выводов, библиографического списка и трёх приложений. Изложена на 368 страницах
машинописного текста и содержит 119 рисунков и 28 таблиц.

Публикации. Основные положения диссертационной работы опубликованы в 60
печатных и электронных работах, из них в ведущих рецензируемых изданиях, входящих в
перечень ВАК РФ — 21, в отечественных изданиях, которые входят в международные
базы цитирования Scopus и Web of Science — 4, в зарубежных изданиях, входящих в
международные базы цитирования Scopus и Web of Science — 16, в других периодических
изданиях — 10, в монографиях — 4, получено 5 свидетельств о регистрации программы
для ЭВМ.
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Глава 1. Состояние вопроса. Основные соотношения статики
неоднородных тел

1.1 Состояние вопроса

В настоящее время охват использования полимерных материалов просто колоссален. В
электротехнике они находят применение в качестве изоляционных материалов, в технике —
в качестве звукоизоляторов, в строительстве — как ограждающие элементы конструкций,
защищающие основные конструкции от воздействия влаги и агрессивных сред, в медицине
— в качестве имплантов, в том числе при протезировании, при производстве стерильного
медицинского оснащения и т. д. Наблюдается тенденции по использованию полимеров в
только в качестве второстепенных элементов конструкции, но и в качестве основных.

Исследование полимерных материалов позволяет проверять новые теории поведения
материала, поскольку полимеры обладают выраженной ползучестью, развивающейся в
течение суток, а не лет, как происходит в случае конструкций на основе бетона.

Возможность установления закономерностей изменения в поведении полимеров под
воздействием различных физических полей, позволяет производить расчёт изделий из
полимеров в постановках, наиболее приближенных к их реальной работе. В дальнейшем
апробированные подходы по изучению подобных закономерностей может быть расширен
и на смежные отрасли науки и технике, в том числе на строительство.

Вопрос изучения полимеров в качестве элементов строительных конструкций:
полиэтиленовые трубя, слабонагруженные элементы конструкций и детали машин,
армированные полимеры в качестве усиливающих элементов конструкций, находящихся
в предаварийном состоянии, лопасти маломощных вентиляторов, насосов [28, 103, 117] и
т. д.

Исследования использования полимеров в качестве элементов конструкций,
обладающих высокой удельной прочностью, например, из стеклопластиков, отражены в
трудах [14, 38, 57]. Армированные анизотропные полимеры применяются в штампах из
дельта-древесины [55, 131].

Среди материалов на основе полимерного связующего стеклопластики показывают
выдающиеся результаты по прочности и жёсткости [12, 20, 37, 49, 48, 57, 98, 109, 112, 120,
132, 135, 151].

В композитных материалах основные параметры материала, определяющие его
поведение с течением времени, задаёт связующее, по крайней мере качественно [1, 2, 3, 15,
63, 69, 70, 71, 121, 129, 134].

Расчёт конструкций в настоящее время возлагается на компьютерные системы
и пакеты прикладных программ. Наиболее распространёнными из них являются
приложения, созданные на основе МКЭ. Для расчёта особо ответственных сооружений
требуется учитывать все максимально возможные свойства материла, проявляемые
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им в реальной жизни. Под действием физических полей и при росте напряжения,
физико–механические параметры материала могут весьма существенно изменяться,
превращаясь из гомогенных систем в гетерогенные, в том числе армированные. Всё это
требует проведения серьёзных научных изысканий, позволяющих установить требуемые
уравнения связи напряжений и деформаций. Подобные исследования можно разделить на
три группы:
Группа I— проведение экспериментов, получение массива опытных данных и их

последующий анализ с целью сбора информации о поведении материала при
различных вариантах нагружения, в том числе и в условиях воздействия физических
полей; разработка систем уравнений, позволяющий связать вместе результаты
опытных изысканий с различными отраслями наук, от механики полимеров до
уравнений теории упругости, пластичности и ползучести; поиск методов решения
полученных систем уравнений.

Группа II— исследование работы композитов, системы «связующее–армирующие
элементы»; разработка критериев, определяющих полученную гетерогенную
систему или как анизотропную, или как изотропную среды; разработка методов
моделирования гетерогенных систем с учётом изменения их свойств при различных
условиях на основе известных параметров слагаемых их компонентов.

Группа III— комплексное изучение напряжённо-деформированного состояния в телах из
композитов, как единого целого, с развитием системы уравнений и созданием новых
теорий прочности, позволяющих оценить прочность конструкций и их элементов в
условиях сложного напряжённого состояния по результатам простейших испытаний.
Группы I и III представлены в основной своей массе конструкторами и специалистами

по проведению расчётов; группа II — технологами, основной задачей которых
является разработка технологии по созданию изделий, материал которых имеет
заранее спроектированные свойства, например, создание искусственной неоднородности
по заданному закону может обеспечить равнонапряжённую работу конструкции в
определённых условиях, что благотворно сказывается на её прочности и долговечности.

Всё вышесказанное свидетельствует о том, что всестороннее проведение подобных
изысканий по решения поставленных выше задач требует междисциплинарного
подхода и значительных ресурсов: длительных интервалов времени для изучения
реологии, значительного количества человека-часов, привлечение многочисленных
исследователей со смежных областей науки, специализацией которых будет как теория,
так и проведение экспериментальных исследований с последующей обработкой и
интерпретацией полученных результатов.

Исследования по изучению механических свойств полимеров, в том числе и
армированных, проводились в СССР ещё с середины XX век. Так изучением
гомогенных изотропных полимеров занимались учёные Т.Алфрей [4], А.Тобольский [134],
Л.Трелоар [136]. Значительный вклад в изучение линейных полимеров внёс
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Ю.С.Лазуркин [69]. Литературный обзор показал наличие весьма скудного количества
работ, посвящённых исследованию жёстких сетчатых полимеров, подавляющее
большинство которых датируется серединой или второй половиной XX века. Ещё
хуже ситуация складывается с наличием исследований по развитию существующих или
созданию новых методов расчёта гетерогенных полимеров, особенно армированных, и
изделий из перечисленных материалов при различных уровнях механического давления
и влияния физических полей различной природы. Работ, посвящённых исследованию
перечисленные задачи при помощи аппарата механики армированных полимеров с учётом
изменения физико–механических параметров по законам, максимально приближенным к
реальной работе конструкций и их элементов, найти не удалось.

Найденные в ходе литературного обзора работы основаны на теоретических
изысканиях, нелинейные уравнения в которых сведены к линеаризованной постановке,
что является весьма грубым подходом, не позволяющим адекватно моделировать
работу полимеров в реальных условиях. В случае моделирования работы полимеров и
иных материалов в более полном объёме, наиболее соответствующему реальной работе
материала, невозможно обойтись без нелинейных физических уравнений связи.

В 60–70х годах XX века А.А.Ильюшин [50], Ю.Н.Работнов [110] и А.К.Малмейстер
[89] смогли подобные физические зависимости получить фемонологически, основываясь
на линейных соотношения. Ряд учёных А.А.Аскадский [15], Г.И. Гуревич [35, 31, 32, 33,
34], А.Л.Рабинович [35, 105] в основе своих трудов положили изыскания молекулярной
природы деформации расмматриваемых сред.

Влияние ионизирующего излучения на материалы более наглядно демонстрируется
на полимерах, представляющих собой, согласно определению, длинные цепочки сшитых
мономеров и олигомеров, при добавлении новых цепочек, свойства полимера остаются
неизменными. Согласно исследования А.А.Аскадского [15], основная масса полимеров
представлена тремя классами:

1. Карбоцепные полимеры, скелет макромолекулы которых представлен только
атомами углерода и водорода. Данный класс представляют: полиэтилен, полипропилен и
т. д). Пример структуры полиэтилена:

−СН2 − СН2 − СН2 − СН2−

2. Гетероцепные полимеры, скелет макромолекулы которых помимо атомов углерода
и водорода включает в себя гетероатомы (кислород, сера, азот и т. д.). Данный класс
представляют: полиэфиры, полиуретаны и т.д̇. Пример структуры полиэтиленоксида:

−СН2 − СН2 −О− СН2 − СН2 −О− СН2 − СН2 −О−;
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3. Высокомолекулярные соединения с сопряжённой системой связей. Данный класс
представляют: полинитрилы, полиацителены и т. д.

−СН = СН− СН = СН− СН = СН− .

Размер молекулы полимера определяет основные его свойства (что напрямую
следует из определения «полимер»), что определяет последствие воздействие на
материал ионизирующего излучения. В зависимости от последствий воздействия
ионизирующего воздействия на материал принято подразделять полимеры на два
класса: структурирующиеся (полиэтилен, полиметилакрилат, поливинилхлорид и др.)
и деструктурирующиеся (полиметилметакрилат, полиизобутилен, поливинилденхлорид
и др.). Как правило, полимер структурируется, если атомы углерода в его цепи имеют
прямую связь с атомами водорода и деструктурируются, если в ближайших к атому
углерода атомы водорода заменены или атомами иных веществ, или иных групп.

В 1958 году проводилась конференция в Женеве, основной темой которой было
мирное использование атомной энергии. На конференции С.С.Медведев [92] представил
предложенную им схему образования связей между молекулами полимера под действием
ионизирующего излучения. Схема предполагала развитие дополнительных «сшивок»
между атомами, что непосредственно сказывается на проявляемых полимером свойствах.
Возникающие связи способствуют под внешней нагрузкой «удержанию» молекул полимера
на своих местах, уменьшению явления их взаимного скольжения. В результате под
действием внешнего растягивающего усилия вместо некоторого возможного «растекания»
молекул полимер происходит распремление и некоторое удлинение звеньев сетки,
что может быть условно представлено как работы пружины. После снятия внешнего
механического воздействия звенья сетки возвращаются на свои изначальные позиции.
Данный эффект может отрицательно сказываться на эксплуатационных качествах,
поскольку при излишней сшивке звеньев сетки материал в целом теряет эластичность к
внешним воздействиям, становится более хрупким.

Сшитие полимеров в практике производится также путём процесса вулканизации.
В.Л.Карпов [56] с сотрудниками разработал новый метод получения и последующего
использования модифицированного под действием ионизирующего излучения полиэтилена
для изготовления изоляции проводов, изделий в результате показали значительное
улучшение эксплуатационных качеств в условиях повышенной температуры.

В технике сшивка полимеров используется для создания изделий (трубы
отопления), обладающих лучшими эксплуатационными качествами по сравнению с
немодифицированными материалами [47, 96, 171, 199, 220].

Полимерные материалы активно используются так же в медицине, не только как
второстепенные, вспомогательные материалы, но и в качестве частичного протезирования
утраченных элементов костей. Обзор литературы показал, что подобное замещение
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утраченных элементов костей восполняли ещё в 80-х годах XX века при помощи
биоактивного нанокерамического армированного полимера [172, 181, 188, 189, 200,
202, 227, 231, 237]. При этом полимерный материал должен обладать определённым
показателем жёсткость, поскольку ремоделированный участок кости воспринимает и
перераспределяет нагрузки от веса человека, при этом способность перераспределения
нагрузок на прямую зависит именно от жесткости полимерного компонента [192, 195].
Помимо требуемой жёсткости, материал для замещения участка костной ткани должен
быть, во-первых, биосовместим с тканями человека, во-вторых, обладать свойствами,
подобными естественной костной ткани [222].

В медицине полиэтилен высокой плотности (далее — ПЭВП) активно используется
в качестве матерала для эндопротезирования. Область его применения ограничивается
проявлением его свойств, из которых надо выделить реологию, относительно невысокий
модуль упругости и слабая биологическая активность. Ряд зарубежных учёных в
своих трудах [173, 206, 224, 228, 236] исследовали ПЭВП на предмет улучшения его
эксплуатационных качеств.

Композитная полимерная матрица может быть получена путём введения в полимерное
связующее керамических частиц. Полученная матрица активно находит применение при
эндопротезировании вместо металлических изделий для замены костей скелета и иных
имплантов, в том числе суставных [173, 193, 196]. Керамические частицы, как правило,
представлены гидроксиаппатитом (далее — ГА), наноглинами и различными углеродными
нановолокнами [193, 196, 197]. Использование ГА позволяет в данном случае улучшить
показатель биологической активности, а также сказывается на увеличении композитной
жёсткости в целом; на прочность изделия, в том числи длительную, влияют свойства
ПЭВП, также проявляемые в условиях его вязкоупругого поведения [193, 196, 197, 194, 221].
Комплексное введение наночастиц ГА в ПЭВП оказывает армирующих эффект,
дополнительная сшивка структурных элементов полимера снижает реологические
свойства и приближает параметры биологической активности к естественный тканям
человека. Подобными изысканиями занимался Р.Кейн [203], объектом изучения которых
являлось влияние ГА на поведение армированного ПЭВП на основании предположения
увеличения усталостной прочности армированного полимера за счёт использования
нитевидных частиц ГА.

Как говорилось ранее, ионизирующее излучение может значительно изменять
свойства материала — структурировать полимеры, образуя дополнительные сшивки. В
случае производства изделия для медицинского использования ионизирующее излучение
обладает ещё одним необходимых эффектом — стерилизацией. Для этих целей необходимо
использовать дозы излучения в пределах 25–70 кГр [231, 183].
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1.2 Основные соотношения статики непрерывно неоднородных тел

1.2.1 Соотношения механики деформируемого твёрдого тела

На рисунке 1.1 приведено схематичное изображение осесимметричных задач,
рассматриваемых в диссертационной работе.

Модельные задачи рассматриваются как в линейной постановке (плоское
деформированное или плоское напряжённое состояния, рисунок 1.1, а–д), так и в
двухмерной (рисунок 1.1, е–ж). Решение задач производится численно на основе метода
конечных элементов (далее — МКЭ), при этом для оценке достоверности местами
рассматривается и применение иных численных методов: метода конечных разностей
(далее — МКР) и вариационно-разностного метода (далее — ВРМ).

В настоящем разделе приводятся основные соотношения МДТТ в цилиндрической
системе координат (в системе осей rθz), необходимые для получения основных
разрешающих уравнений в последующих главах. В дальнейшем перемещения вдоль
оси r обозначаются u, вдоль оси θ — v, вдоль оси z — w.

Дифференциальные уравнения равновесия (уравнения Навье):

1
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∂
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r
(rτzr) + Z = 0,

(1.1)

где R, Θ, Z — объёмные силы.
Формулы Коши: 
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Рисунок 1.1 — Постановка модельных задач
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Уравнения совместности деформаций Сен-Венана [5]:
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(1.3)

В практических расчёта уравнения совместности деформаций Сен-Венана (1.3)
практически не используются. Однако, эта система в случае постоянства перемещения
v в направлении окружной оси θ, т. е. ∂v/∂θ = 0, может быть упрощена. В своей
монографии академик В.И.Андреев [6] приводит приём, позволяющий при работе в
цилиндрических координатах с плоскими задачами получить следующее выражение для
связи окружного напряжения с радиальным путём дифференцирования по радиусу r в
уравнениях Коши (1.2) окружной деформации εθ:
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r
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Окончательно
∂εθ
∂r

+
εθ − εr

r
= 0. (1.4)

Выражение (1.4) легче использовать на практике при решении задач в плоской
постановке вследствие более низкого порядка по сравнению с записью в системе (1.3).

Деформации:
Полная относительная деформация ε складывается из упругой компоненты εel и

вынужденной εвын:
ε = εel + εвын, (1.5)

где ε— вектор полной относительной деформации, определяемой по формулам Коши (1.2);
εel — вектор упругой относительной деформации (от английского elastic):

ε =
{
εr εθ εz γrθ γθz γrz

}T

;

εel =
{
εel,r εel,θ εel,z γel,rθ γel,θz γel,rz

}T

,
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εвын — вектор вынужденных относительных деформаций (температурное расширение
материала, влагоупругость, наличием ионизирующего излучения, преднапряжённое
состояние, ползучесть, развитие пластических деформаций и т. д.), которые в
диссертационной работе представлены суммой температурной деформации и деформации
ползучести материала:

εвын = εT + εcr,

где температурная деформация инвариантна к направлению осей и определяется
коэффициентом линейного расширения материала α значением изменения температуры
∆T

εT =


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(α · ∆T ) , (1.6)

где кроме отдельно оговоренных случаев изменением значения коэффициента линейного
расширения материала от температуры пренебрегается, т. е. α = α(T ) = const.

Деформации ползучести εcr (от английского creep) разлагаются на осевые компоненты

εcr =
{
εcr,r εcr,θ εcr,z γcr,rθ γcr,θz γcr,rz

}T

. (1.7)

Закон Гука для объёмного напряжённого состояния связывает упругую составляющую
деформации с напряжениями:
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σ

, (1.8)

или в матричном представлении
εel = Hσ.

Отсюда напряжения могут быть выражены через деформации

σ = H−1εel = Dεel, (1.9)
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где D — матрица жёсткости, является обратной по отношению к матрице H и в случае
объёмного напряжённого состояния равна

D = H−1 =
E (ν− 1)
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0 0
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0
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
. (1.10)

В случае наличия вынужденных деформаций, значения напряжений могут быть
получены следующих образом:

ε = εel + εвын → ε = Hσ+ εвын → H−1ε = H−1Hσ+H−1εвын;

σ = H−1ε−H−1εвын.

С учётом зависимости H и D из выражения (1.10), окончательно напряжения через
деформации определяются

σ = D (ε− εвын) . (1.11)

Полная энергия системы
Полная энергия системы Э представляет собой разность между энергией упругой

деформации тела Π и работой внешних сил W :

Э = Π−W. (1.12)

Здесь
Π =

1

2

w
V

σT · εel dV, (1.13)

где σ связано с εel через выражение (1.8) в случае отсутствия вынужденных деформаций
или через выражение (1.11) при их наличии; согласно выражению (1.5) полная
относительная деформация ε равна её упругой составляющей εel в случае отсутствия
вынужденных деформаций (ε = εel) и εel = ε− εel при её наличии.

Вторая компонента правой части выражения (1.12) связана с осевыми проекциями
объёмных сил R, Θ, Z и поверхностных нагрузок R̄, Θ̄, Z̄

W =
w
V

(Ru+Θv + Zw) dV +
w
Ω

(
R̄u+ Θ̄v + Z̄w

)
dΩ, (1.14)
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Уравнение теплопроводности записывается

−div (λgradT ) = qT − ρc∂T
∂t

, (1.15)

где начальные параметры (далее — НП) T = T∗ при t = t0 и граничные условия (далее —
ГУ):

T = TΓ на Γ1;

λ
∂T

∂n
+Q = 0 на Γ2;

λ
∂T

∂n
+ α (T − T0) = 0 на Γ3.

В случае применения численных методов выражение (1.15) удобно представить:

−div (κ gradT ) + βT = f(r, θ, z, t). (1.16)

Здесь в выражениях (1.15) и (1.16): T — температура; κ = λT/ (cpρ) — коэффициент
температуропроводности материала; λT — коэффициент теплопроводности; cp —
изобарная теплоёмкость; ρ — плотность материала; qT — удельная мощность источников
теплоты, которая считается положительной, если теплота подводится к структуре; Q —
поток теплоты на части границы Γ , который считается положительным, если теплота
теряется структурой; α — коэффициент теплообмена с окружающей средой температурой
T0; TΓ — температура на части границы Γ ; T∗ — начальное распределение температуры;
Γ = Γ1

⋃
Γ2
⋃
Γ3 — полная граница многослойной области V ; n — внешняя нормаль к

границе Γ .

1.2.2 Переход от эллиптических уравнений к вариационной
постановке

Использование энергетических методов предполагает решение эллиптических краевых
задачах, в которых происходит поиск функции ϕ(x̄) : Ω→ R, удовлетворяющую уравнению

−div (ξ gradϕ) +ωϕ = ψ (1.17)

с краевыми условиями
ϕ (x̄)|Γ1 = g (x̄) ; (1.18)

ξ
∂ϕ

∂n

∣∣∣∣
Γ2

−Λ = 0; (1.19)
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ξ
∂ϕ

∂n

∣∣∣∣
Γ3

+ γ (ϕ|Γ3 − ζ) = 0, (1.20)

где Γ1 ∪ Γ2 ∪ Γ3 = Γ , Γi ∩ Γj = ∅ при i ̸= j.
Использование МКЭ для поиска решения уравнения (1.17) с ГУ (1.18)—(1.20)

заключается отыскании минимума выпуклого функционала ϕ = argminφ Imφ [18, 24, 30,
54, 68, 93, 118, 123], где:

Im (φ) =
w
Ω

[
ξ (gradφ)2 +ωφ2

]
dΩ+

+
w
Γ3

γφ2 dΓ − 2
w
Γ3

γζφ dΓ − 2
w
Γ2

Λφ dΓ − 2
w
Ω

ψφ dΩ. (1.21)

1.3 Основные уравнения метода конечных элементов и метода конечных раз-
ностей

1.3.1 Одномерный симплекс-элемент метода конечных элементов

Одномерный симплекс-элемент (см. рисунок 1.2) в узлах i и j с координатами Ri

и Rj имеет значения искомых функций Φi и Φj в вышеуказанных узлах. Применение
МКЭ производится в глобальной системе координат. Между узлами i и j аппроксимация
функции ϕ производится по линейному закону [127]

φ = α1 + α2r =
{
1 r

}{α1

α2

}
︸ ︷︷ ︸

α

=
{
1 r

}
α. (1.22)

Рисунок 1.2 — Одномерный симплекс-элемент
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Коэффициенты α1 и α2 могут быть определены путём подстановки радиуса узлов и
значений функций в уравнение (1.22):

φ (r = Ri) = Φi и φ (r = Rj) = Φj.

Или в матричном виде[
1 Ri

1 Rj

]
︸ ︷︷ ︸

r

{
α1

α2

}
︸ ︷︷ ︸

α

=

{
Φi

Φj

}
︸ ︷︷ ︸

Φ

или rα = Φ.

Следовательно
α = r−1Φ.

Полученное значение α подставляется в (1.22)

φ =
{
1 r

}
r−1Φ =

{
Ni Nj

}{Φ1

Φ2

}
, (1.23)

где Ni =
Rj − r

Rj −Ri

и Nj =
r −Ri

Rj −Ri

.
Выражение (1.23) окончательно принимает вид:

φ = NΦ, (1.24)

где N =
{
Ni Nj

}
; Φ =

{
Φi

Φj

}
.

1.3.2 Двумерный симплекс-элемент метода конечных элементов

В диссертационной работе в системе осей rOz используются два типа двухмерных
КЭ: треугольный и прямоугольный. Прямоугольный КЭ подробно рассматривается в
главе 5. Далее рассматривается треугольный КЭ [127], представленный на рисунке 1.3, не
содержащий промежуточных узлов. Нумерация узлов производится против хода часовой
стрелки.

Значение функции между узлами определяется при помощи полинома:

φ = α1 + α2r + α3z =
{
1 r z

}
.


α1

α2

α3

︸ ︷︷ ︸
α

. (1.25)
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Рисунок 1.3 — Двумерный симплекс-элемент

Как и в случае одномерного КЭ, коэффициенты α1–α3 могут быть определены путём
подстановки радиуса узлов и значений функций в уравнение (1.25):

φ (r = Ri, z = Zi) = Φi, φ (r = Rj, z = Zj) = Φj и φ (r = Rk, z = Zk) = Φk.

Или в матричном виде1 Ri Zi

1 Rj Zj

1 Rk Zk


︸ ︷︷ ︸

r


α1

α2

α3

︸ ︷︷ ︸
α

=


Φi

Φj

Φk

︸ ︷︷ ︸
Φ

или rα = Φ.

Следовательно
α = r−1Φ,

где

α =


α1

α2

α3

 =
1

2A

RjZk −RkZj RkZi −RiZk RiZj −RjZi

Zj − Zk Zk − Zi Zi − Zj

Rk −Rj Ri −Rk Rj −Ri



Φ1

Φ2

Φ3

 ,

2A = det

∣∣∣∣∣∣∣
1 Ri Zi

1 Rj Zj

1 Rk Zk

∣∣∣∣∣∣∣ = RjZk −RkZj +RkZi −RiZk +RiZj −RjZi.

Полученное значение α подставляется в (1.25)
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φ =
{
1 r z

}
r−1Φ =

{
Ni Nj Nk

}
Φ1

Φ2

Φ3

 , (1.26)

окончательно функция φ имеет вид:

φ = NΦ. (1.27)

В выражении (1.26) функции формы имеют вид:

N =


Ni

Nj

Nk

 =
1

2A

RjZk −RkZj Zj − Zk Rk −Rj

RkZi −RiZk Zk − Zi Ri −Rk

RiZj −RjZi Zi − Zj Rj −Ri



1

r

z

 . (1.28)

Определим значения дифференциала функции φ (1.27) по координатам r и z. При
этом дифференцированию подвергаются функции формы (1.28)

∂φ

∂r
=

{
∂Ni

∂r

∂Nj

∂r

∂Nk

∂r

}
Φi

Φj

Φk

 =
1

2A

{
Zj − Zk Zk − Zi Zi − Zj

}
Φi

Φj

Φk

 .

Аналогично

∂φ

∂z
=

{
∂Ni

∂z

∂Nj

∂z

∂Nk

∂z

}
Φi

Φj

Φk

 =
1

2A

{
Rk −Rj Ri −Rk Rj −Ri

}
Φi

Φj

Φk

 .

Таким образом, производная функции φ по осям r и z является величиной постоянной
в пределах КЭ.

1.3.3 Основные выражения метода конечных разностей

Контроль правильности решения одномерных задач в диссертационной работе
происходит путём сопоставления двух решений, полученных при помощи МКЭ и МКР.
Далее приводятся основные выражения, используемые в решении при помощи МКH.

Пусть дана некоторая функции φ = f(r), непрерывная и дифференцируемая на
всей области возможных значений. Тогда её производная будет равна пределю которой
называется предел отношения приращения функции ∆φ к приращению аргумента ∆ при
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стремлении последнегок нулю:

φ′ = f ′(r) = lim
∆r→0

∆φ

∆r
, ∆φ = f(r + ∆r)− f(r).

Нахождения значения производной указанной выше функции может быть проведено
при помощи численного дифференцирования [19, 142], для этого используется построение
на некотором интервале [a, b] равномерной сетки (рисунок 1.4), в каждом узле которой
определены значения функции φ. Неравномерная сетка не рассматривается.

ωx =

{
Ri = a+ (i− 1)∆x; ∆x =

b− a

N
; i = 1, 2, . . . , N + 1

}
.

Рисунок 1.4 — Схема аппроксимации функции с помощью метода конечных разностей

Приближённое значение производной определяется

φ′ ≈ ∆φ

∆r
.

Известны формулы определения левой, центральной и правой разностей для
определения производной в заданных точках [19, 142]:

— левая разность (см. рисунок 1.4, прямая слева от узла i):

⃝⊗ ∆φi = φi −φi−1; ∆r = h; φ′
i ≈

φi −φi−1

h
+O(h) (1.29)

— правая разность (см. рисунок 1.4, прямая справа от узла i):

⊗⃝ ∆φi = φi+1 −φi; ∆r = h; φ′
i ≈

φi+1 −φi

h
+O(h) (1.30)

— центральная разность (см. рисунок 1.4, прямая между узлами i− 1 и i+ 1):

⃝×⃝ ∆φi = φi+1 −φi−1; ∆r = h; φ′
i ≈

φi+1 −φi−1

2h
+O(h2) (1.31)
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Производные старших порядков определяются при помощи (1.29) и (1.30):

⃝⊗⃝ φ′′
i = (φ′

i)
′ =

φi+1 − 2φi +φi−1

h2
+O(h2). (1.32)

Аппроксимация производной в крайних точках i1 и iN+1 при этом оказывается
весь неточная, поскольку при этом используются левая (1.29) и правая (1.30) разности,
точность которых минимальна и составляет O(h). Для повышения точности необходимо
задействовать большее количество узлов [142]:

— пятиузловая аппроксимация первой производной функции φ = f(r):

φ′
1 =

−25φ1 + 48φ2 − 36φ3 + 16φ4 − 3φ4

12h
+

h4

5
φV

∗ ;

φ′
2 =

−3φ1 − 10φ2 + 18φ3 − 6φ4 +φ5

12h
− h4

20
φV

∗ ;

φ′
3 =

φ1 − 8φ2 + 8φ4 −φ5

12h
+

h4

30
φV

∗ ;

φ′
4 =

−φ1 + 6φ2 − 18φ3 + 10φ4 + 3φ5

12h
− h4

20
φV

∗ ;

φ′
5 =

3φ1 − 16φ2 + 36φ3 − 48φ4 + 25φ5

12h
+

h4

5
φV

∗ .

(1.33)

— пятиузловая аппроксимация второй производной функции φ = f(r):

φ′′
1 =

35φ1 − 104φ2 + 114φ3 − 56φ4 + 11φ4

12h2
+O(h3);

φ′′
2 =

11φ1 − 20φ2 + 6φ3 + 4φ4 −φ5

12h2
+O(h3);

φ′′
3 =

−φ1 + 16φ2 − 30φ3 + 16φ4 −φ5

12h2
+O(h4);

φ′′
4 =

−φ1 + 4φ2 + 6φ3 − 20φ4 + 11φ5

12h2
+O(h3);

y′′5 =
11φ1 − 56φ2 + 114φ3 − 104φ4 + 35φ5

12h2
+O(h3).

(1.34)

Выражение (1.33) содержит в правой части φV
∗ — производную пятого порядка. При

этом значение шага сетки h имеет малый размер, поэтому значение h4 слишком мало и его
можно опускать в расчётах.

1.4 Выводы по главе

1. Приведён краткий обзор трудов исследователей, которые занимались в области
механики полимеров, в том числе, модификацией их свойств путём введения добавок и
воздействием внешнего излучения (температурного, ионизирующего и т. д.).
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2. Изложены уравнения механики, непосредственно используемые в численных
методах: МКР и МКЭ. Рассмотрен учёт вынужденных деформаций, в том числе, при
выводе потенциальной энергии упругой деформации тела.

3. Приводится переход от эллиптических уравнений, характерных для решения
задач поля, в дифференциальной постановке к их вариационным формам. Приведённые
уравнения используются для составления уравнения потенциала физических полей
(температурного, ионизирующего и т.д.) и его последующей минимизации.

4. Приведены основные положения двух численных методов (МКР и МКЭ),
применяемых в диссертационной работе.
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Глава 2. Методика определения параметров уравнения состояния
на основе обработки экспериментальных кривых

2.1 Основные соотношения механики вязкоупругих материалов

В середине XX века в своих трудах отечественные учёные В.Ф.Бабич [16] и
А.Л.Рабинович [105, 106, 107] исследованиях продемонстрировали, что с точки зрения
механики полимеров и оценки работоспособности изделий из полимерных материалов,
когда напряжения ограничены некоторыми предельными значения, деформация
ползучести значительно преобладает над развитием остаточных (пластических)
деформаций. При этом полная деформация по своему максимальному значению во
много раз меньше единицы, что обеспечивает выполнение гипотезы малых перемещений
и позволяет в полной мере использовать аппарат теории упругости для расчёта НДС
конструкций и изделий из полимеров.

Следовательно, правомочным является допущением, что развитием пластических
деформаций при моделировании работы конструкций из полимерных материалов на
соответствие эксплуатационных требований, можно пренебречь. В этом случае, как было
принято в выражении (1.5), полная относительная деформация полимера представляется
сумой упругой составляющей относительной деформации εel и относительной деформации
ползучести εcr (εвын представляется εcr при отсутствии физических полей и иных
компонентов вынужденных деформаций).

При использовании в математических и физических моделях итерационных процессов
каждый последующий шаг может превышать некоторый «критический параметр», при
котором происходит разрушение конструкции. При этом на предыдущем этапе указанный
критический фактор может быть сильно не достигнут, а на следующем этапе —
значительно превышен. Поэтому численное моделирование не всегда даёт точную оценку
момента наступления критического состояния, а лишь её примерное значение. Результат
может быть несколько улучшен при помощи более тщательно анализа полученных в ходе
моделирования данных, особенно в близи начала критического состоянии, с последующей
экстраполяцией данных предыдущего шага до достижения опасного состояния, вплоть
до разрушения. Необходимо отразить, что разными авторами за указанный выше
«критический параметр» для каждой отдельной задачи принимается различный фактор:
превышение некоторого уровня предельного напряжений, или некоторого уровня полной
относительной информации — при моделировании НДС в полимерных изделиях, или
превышение некоторой критической скорости развития деформаций — при моделировании
устойчивости конструкций и их элементов. В.Ф.Бабич [16] и А.Л.Рабинович [105, 106, 107]
в качестве критического параметра использовали предельный уровень деформации, на
основе которого была представлена теория прочности. Однако, эти исследования
базировались на экспериментальных результатах испытания полимерных образцов на
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сдвиг и одноосное растяжение–сжатие, поэтому предложенный ими критерий прочности
лежит вне настоящей диссертации.

В дальнейших выкладках будут использованы уравнения, основанные общей
кинематической теории [105] по причине, как говорилось ранее, значительной малости
полной относительной деформации и, соответственно, её составляющих компонент,
по сравнению с единицей. Уравнение связи напряжений и полной относительной
деформации при этом будет иметь нелинейных характер в течение длительного периода
времени и определяемая уравнением Максвелла–Гуревича. По этой же причине сетчатые
полимеры, в том числе связующие, в моделях допускается рассматривать в качестве
упругорелаксирующей среды.

2.1.1 Вязкоупругость

Как было сказано во введении, в настоящей диссертационной работе в качестве связи
напряжений и деформаций используется нелинейное обобщённое уравнение Максвелла в
форме, предложенной Г.И. Гуревичем (уравнение Максвелла–Гуревича). Перед описанием
уравнения Максвелла–Гуревича необходимо привести обзор иных существующих моделей
вязкоупругости.

Если говорить об идеализированном представлении деформации в общем смысле, то
она имеет две формы: подчиняющаяся закону Гука — пропорциональность напряжений и
деформаций — соответствует упругой деформаций твёрдых тел; подчиняющаяся закону
Ньютона — пропорциональность напряжений и скорости течения — соответствует течению
жидкости.

В реальной жизни тела работают иначе, имеются отклонение от идеализированных
представлений, которые аналогично могут быть представлены двумя группами: величина
напряжения и упругой деформации, или напряжения и скорость течения жидкости —
имеют нелинейный характер пропорциональности; связь напряжения и деформаций
включает третий компонент — скорость самой деформации во времени, что характерно
в телах, обладающими одновременно свойствами твердого тела при нагрузках, быстро
изменяющих величину или направление во времени, и свойствами жидкости при нагрузках,
медленно изменяющих величину или направление во времени. Демонстрирующие свойства
как твёрдого тела, так и жидкости тела, называются вязкоупругими.

При изучении реологических процессов основное внимание акцентируют на
функциональной зависимости напряжений и деформаций от времени (σ/ε = f(t)),
т. е. основное внимание уделяется изучению процессов при помощи теории линейной
вязкоупругости, при этом на функциональной зависимости от самих напряжений или
от самих деформаций в разные моменты времени (σ/ε = f(t, ε)), соответствующей
нелинейной вязкоупругости, уделяется малое количество времени.

31



Предложенная Максвеллом модель представляла из себя последовательное соединение
двух компонент, отвечающих за работы в различных фазах: пружина является
эквивалентом обратимых деформаций, соответствующих упругой работе материала,
а поршень — эквивалент необратимых деформаций, связанных с работой тела в вязкой
среде (рисунок 2.1, а). Кельвин предложил представить подобное соединение компонент
как параллельное (рисунок 2.1, б), его идеи в дальнейшем были развиты Фойгтом.

Рисунок 2.1 — Модели вязкоупругости: а — Максвелла; б — Кельвина

С учётом последовательного расположения компонент в модели Максвелла скорость
изменения напряжений может быть записана для случаев развития деформаций сдвига и
деформаций растяжения:

dσij

dt = Eij
dεij
dt − σij

te
, i, j = x, y, z. (2.1)

В выражении (2.1) использованы следующие обозначения: t — время деформации; te
— время, необходимое для того, чтобы напряжение в теле уменьшилось в e раз; напряжение
σij равно напряжению сдвига σС при i ̸= j или равно нормальному напряжению σН при
i = j; относительная деформация εij равна деформации сдвига γ при i ̸= j или равна
деформации при растяжении εН при i = j; Eij равно модулю сдвига G при i ̸= j или равно
модулю упругости полимера E при i = j.

При изучении процесса релаксации напряжений относительная деформация εij

является постоянной величиной εij = const, следовательно нулю будет равна её скорость
изменения во времени dεij/dt = 0 и выражение (2.1) принимает вид:

dσij

dt = −σij

te
(2.2)

или после разделения переменных в выражении (2.2)

dσij

σij

= −dt
te
. (2.3)
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Последующее интегрирование (2.3) даёт

ln σij

σij,0

= − t

te
→ σij =

σij,0

et/te
, (2.4)

где σij,0 — уровень напряжения в первоначальный момент времени t = 0, при котором
состояние тела является неравновесным; σij — напряжение в момент времени t.

Выражение (2.4) показывает, что с течением времени происходит некоторое снижение
уровня напряжения в теле с течением времени, т. е. σij < σij,0, наблюдается его
релаксация. Если говорить про идеализированное крайнее положение момента времени,
равному бесконечному значению t → ∞, уровень напряжение асимптотически стремится
к нулю. При этом выделяется некоторый характерный промежуток времени te = t,
при котором уровень напряжения уменьшается в e раз; согласно (2.4), если изменение
напряжения происходит за некоторый интервал времени t, т. е.

te = t при σij =
σij,0

e
. (2.5)

Выражение (2.5) отражает суть параметра времени te, входящего в выражение (2.1).
Несколько иначе записываются выражения для процесса ползучести. В этом случае

постоянной по времени величиной является уровень напряжения (σij = const; dσ/dt = 0),
соответственно выражение (2.1) принимает вид

Eij
dεij
dt − σij

te
= 0.

Тогда

σij = Eij · te ·
dεij
dt ; (2.6)

При сопоставлении полученного выражения (2.6) с законом вязкости (внутреннего
трения) Ньютона

σij = ηij
dεij
dt

видно, что произведение величин Eij · te равно коэффициенту вязкости:

ηij = Eijte, (2.7)

где ηij, аналогично принятым в выражении (2.1) обозначениям, соответствует при сдвиге
коэффициенту вязкости ηС при i ̸= j или при растяжении — коэффициенту вязкости ηН
при i = j.

Поскольку при индексах i ̸= j (при сдвиге) получаем Eij = G, а при i = j (при
растяжении) Eij = E, с учётом, что G = E/ [2 (1 + ν)], из выражения (2.7) следует, что
и коэффициенты вязкости при различных НДС отличаются друг от друга, т. е. ηС ̸= ηН.
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Если рассматривать идеализированные крайние случаи — абсолютно хрупкий и абсолютно
несжимаемый материалы — то коэффициент Пуассона меняется от ν = 0 и до ν = 0.5

соответственно. В этом случае модуль сдвига G может варьироваться от 1
2
E до 1

3
E

соответственно. Однако, в большинстве существующих теорий используется гипотеза, что
при изменении деформаций ползучести общий объём, связанный с этими деформациями,
остаётся неизменным, тогда принимается νcr = 0.5 и, согласно выражению (2.7), ηН = 3ηC,
т. е. в данном случае вязкость, связанная с развитием деформаций при растяжении, в три
раза превышает таковую при развитии сдвиговых деформаций.

В отличие от модели Максвелла, модель Кельвина предполагает постоянство
деформаций в обеих ветвях (см. рисунок 2.1) и суммированию в этой случае подвергаются
уровни напряжений в упругой компоненте σel и вязкоупругой σvisc (от англ. viscoelasticity):

σ = σel + σvisc = Eε+ η
dε
dt , (2.8)

где ε— значение относительной деформации, уровень которой равен для обоих ветвей; dεdt
— её скорость изменения во времени.

По своей структуре уравнение (2.8) является неоднородным дифференциальным,
общее решение которого может быть осуществлено известными шагами поэтапно:

1. Рассматривается однородное уравнение для поиска общего однородного (ОО)
решения

η
dε
dt + Eε = 0 → εОО =

C

e(E/η)t
,

где C — некоторая произвольная постоянная интегрирования, значение которой равно − σ
E
.

2. Рассматривается неоднородное уравнение для поиска частного неоднородного (ЧН)
решения

εЧН =
σ

E
.

Общее неоднородное решение равно сумме обоих слагаемые ОО и ЧН:

ε = εОО + εЧН =
σ

E
+

C

e(E/η)t
.

Следовательно
ε =

σ

E

(
1− 1

et/te

)
. (2.9)

Анализ выражения (2.9) показывает, что есть некоторое предельное значение
относительной деформации, равное отношению значения напряжения в теле к
модулю упругости материала εult = σ/E, к которому асимптотически стремится
относительная деформации при рассмотрении процесса на значительном промежутке
времени, стремящемся к бесконечности. Если рассматривается произвольная точка на
выбранном промежутке времени, не равном в пределе бесконечности, то полученный
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уровень относительной деформации будет представлять собой лишь некоторую долю от
предельного уровня εult; иначе говорят, что имеет место запаздывание деформации. В
этом случае вводится параметр времени, называемый временем запаздывания, равный
отношению вязкости материала к значению модуля упругости tЗ = η/E.

Были предложены многочисленными авторами иные модели ползучести, в основе
которых лежит, как упоминалось ранее в выражении (1.5), представление полной
относительной деформации как суммы двух компонент: упругой и вынужденной,
последняя при этом может представляться деформациями ползучести или пластическими
деформациями:

ε = εel + εcr.

При этом деформация ползучести представляется как произведение коэффициентов,
представляющих собой функциональные зависимости от многих факторов, таких как
уровень напряжения в теле, время, температура:

εcr = f1(σ) · f2(t) · f3(T ). (2.10)

Рассмотрим каждую функциональную зависимость по-отдельности, начиная с первой
(f1 (σ)). Самые наиболее часто встречаемые в научных изысканиях являются следующие
законы:

Закон f1(σ) Название закона
Bσn закон Нортона
C sh(ασ) закон Прандтля
Deβσ закон Дорна
A [sh(γσ)]n закон Гарофало
B(σ− δ)n закон трения

где в таблице все параметры, за исключением напряжения σ, определяются отдельно
для каждого исследуемого материала и соответствуют определённым материальным
константам.

Из приведённых законов в практике довольно широкое распространение получил
степенной закон Нортона, т. к. его «стержнем» являются физические соображения. При
этом закон Нортона вместе с законами Прандтля и Дорна являются лишь частные
случаями более общего закона Гарофало.

Вторая компонента отражает функциональные зависимости от времени и часто
приводится следующим образом:
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Закон f2(t) Название закона
t для второй стадии ползучести
Btm закон Бейли(
1 + bt1/3

)
ekt закон Андраде∑

i ait
mi закон Греэхема и Уоллеса

Вторая компонента, учитывающая функциональную зависимость от температуры
тела T , обычно записывают в виде закона Аррениуса

f3(T ) = Ae−∆H/kT ,

где ∆H — энергия активации; k — постоянная Больцмана; T — абсолютная температура.
Довольно часто используется для решения простейших задач на основе

функциональной зависимости (2.10) следующее представление деформаций ползучести,
основанной на простейших формах её множителей:

εcr =
C

e∆H/kT
tmσn,

откуда в случае неизменного значения температуры тела деформации ползучести могут
быть определены при помощи выражения

εcr = Btmσn. (2.11)

Необходимо отметить, что приведённые выше выражения имеют значительные
ограничения по возможной области их применения — уровень напряжения должен
оставаться неизменным. Если моделирование происходит при изменяющемся во времени
уровне напряжений, то необходимо работать со скоростью деформаций. Для этого
соотношения (2.11) дифференцируются по времени, рассматривается квазистатическая
постановка, при которой допускается на конкретном этапе времени t принимать σ = const:

dεcr
dt = mBtm−1σn, (2.12)

при этом имеется возможность отразить скорость деформаций без учёта конкретного
момента времени t путём сопоставления соотношений (2.11) и (2.12):

dεcr
dt =

mB1/mσn/m

ε
(1−m)/m
cr

.

При этом предложенные выражения могут качество смоделировать лишь начальную
стадию ползучести, при которой наблюдается с течением времени затухание скорости
развития деформаций ползучести. Однако, скорость ползучести полимерных материалов
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может быть представлена в виде суммы спектров, каждый из которых проявляется в
различные моменты.

Распространённые программные комплексы для моделировани НДС: ANSYS [124, 230],
Solid Works [225, 226] и др. — помимо упомянутой функциональной зависимости (2.10)
учитывает ещё функцию от замой деформации при описании деформаций ползучести:

εcr = f1(σ) · f2(ε) · f3(t) · f4(T ).

Представленная форма позволяет работать только в одном направлении — с
необратимыми во времени деформациями ползучести, о чём говорится в официальном
справочном пособии [124]. В жизни приложенные внешние силы часто меняют своё
значение и направление, поэтому невозможность учёта данного фактора серьёзно
ограничивает значимые исследования в вопросах изучения ползучести. В связи с
вышесказанным и было выбрано с качестве основного уравнения состояния нелинейное
обобщённое уравнение Максвелла–Гуревича. Поскольку оно отсутствует во всех
распространённых комплексах, предназначенных для моделирования НДС, всё расчёты
проводились в модулях, написанных самостоятельно.

2.1.2 Основные уравнения механики полимеров. Уравнение Максвелла–Гуревича

Определение входящих в уравнение Максвелла–Гуревича физико–механических
параметров производится на основании опытных данных, проведённых в линейной
одномерной постановке в системе координат xzy (рисунок 2.2), при этом последующее
решение поставленных задач при этом производится в цилиндрической системе координат
rθz. Рассмотрим основные соотношение механики полимеров, необходимые для обработки
и последующего анализа экспериментальных данных, полученных при испытаниях
полимеров.

Для сокращения объёмов выражений основные индексы, связанные с системой
координат xyz, в том числе для записи смещений и компонентов напряжений, удобно
записывать в виде числовых индексов 1, 2, 3

x = x1; y = x2; z = x3; u = u1; v = u2; w = u3,

σxx = σ11, . . . , τyz = σyz = σ23, . . . , (1, 2, 3), (σij = σki) .

Что касается отображения относительной деформации, то для сдвиговой вводится
соотношение

γyz = εyz = 2ε23 → 2εij =
∂ui

∂xk

+
∂uk

∂xi

(i, j = 1, 2, 3). (2.13)
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Рисунок 2.2 — Элемент сплошной среды в декартовых координатах

благодаря которому тензор и девиатор деформаций принимают более удобные формы
записи.

Тогда полная относительная деформация, а также её компоненты могут быть
записаны

εxx = ε11, . . . , εyz = 2ε23, . . . ,

εel,xx = εel,11, . . . , εel,yz = 2εel,23, . . . ,

εcr,xx = εcr,11, . . . , εcr,yz = 2εcr,23, . . . , (1, 2, 3).

Как приводилось в выражении (1.5), полная деформация складывается из двух
компонент: упругой и вынужденной. Последняя при этом представляется температурными
деформациями (1.6) и деформациями ползучести (1.7)

εij = εel,ij + εcr,ij + α (T − T0) δij︸ ︷︷ ︸
εвын

(i, j = 1, 2, 3), (2.14)

δij =

{
1 при i = k,

0 при i ̸= k,

где δij — символ Кронерека
Введём обозначение υ — скорость изменения деформаций во времени, которая

получается из выражения (2.14) путём его дифференцирования во времени.

υij =
∂εij
∂t

=
∂εel,ij
∂t

+
∂εcr,ij
∂t

+ α
∂T

∂t
δij (i, j = 1, 2, 3). (2.15)
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Из закона Гука (1.8) возможно выразить относительную деформацию через
напряжения

εel,ij =

(
σij −

3ν

1 + ν
pδij

)
1

2G
(i, j = 1, 2, 3), (2.16)

где ν — коэффициент Пуассона; G =
E

2(1 + ν)
— модуль сдвига; p — среднее давление.

А.Л.Рабинович [105] приводит выражение для определения скорости деформаций
ползучести применительно к уравнению Максвелла–Гуревича

∂εcr,ij
∂t

=

[
3

2
(σij − pδij)− E∞εcr,ij

]
1

η∗
(i, j = 1, 2, 3), (2.17)

или с учётом закона Гука

∂εcr,ij
∂t

=

(
εel,ij −

θelδij

3
− G∞

G
εcr,ij

)[(
1 +

G∞

G

)
te

]−1

(i, j = 1, 2, 3). (2.18)

Как указывалось ранее в пояснении к выражению (2.7) при изменении деформаций
ползучести общий объём, связанный с этими деформациями, остаётся неизменным (θcr =
0 → νcr = 0.5), что справедливо и в отношении уравнения Максвелла–Гуревича

G∞ =
E∞

2(1 + νcr)
=

E∞

3
→ E∞ = 3G∞,

где te — соответствующее время релаксации.
Входящий в выражение скорости относительной деформации ползучести (2.17)

коэффициент начальной релаксационной вязкости η∗ определяется при помощи
зависимости

η∗ =
η∗0

exp
{

1

m∗

[
γ∗p+

∣∣∣∣32 (σii − p)− E∞εcr,ii

∣∣∣∣
max

]} , (2.19)

где индексом ii обозначен случай i = j, таким образом слагаемое σii представляет
собой главные напряжения; γ∗ — объёмный коэффициент являющийся функцией от
температуры, структуры полимера и т. д.

Или, с учётом записи выражения (2.17)

1

η∗
=

1

η∗0
exp

{
1

m∗

[
γ∗p+

∣∣∣∣32 (σii − p)− E∞εcr,ii

∣∣∣∣
max

]}
.

Коэффициент начальной релаксационной вязкости η∗ может быть связан со
временем релаксации te через мгновенный G и длительный модули сдвига G∞ при помощи
выражения
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η∗ = 3G
(
1 +G∞/G

)
te. (2.20)

В приведённых выше соотношения применены следующие соотношения Здесь, как и
ранее, использованы соотношения для среднего значения интенсивности напряжения p:

p =
1

3

3∑
i=1

3∑
k=1

σijδij =
1

3

3∑
i=1

σii =
σ11 + σ22 + σ33

3
,

а также его связь с относительной деформацией (в том числе и объёмной):

θel =
3∑

i=1

εel,ii; p = Kθel; K =
E

3 (1− 2ν)
.

Полное относительное изменение объёма определяется с учётом всех компонент, их
которой сумма объёмных деформаций ползучести равна нулю

θ =
3∑

i=1

εii =
3∑

i=1

∂ui

∂xi

;
3∑

i=1

εcr,ii = 0; θ = θel + 3α(T − T0).

Выражение для определения коэффициента релаксационной вязкости (2.19) становить
наиболее удобно в случае отсутствия градиента температурного поля и неизменного его
уровня по толщине тела. В этом случае переменные, слагаемое вышеуказанное уравнение,
допускается принимать константами. Помимо сказанного, параметр p = θelK, по сравнению
с остальными компонентами выражения вязкости, весьма мал, им также позволительно
пренебречь.

Совместное рассмотрение выражений (2.14)–(2.16) приводит к получению системы
уравнений для определения перемещений ui, значений суммарной относительной
деформации εij и уровня напряжения σij.

Получить непосредственно значения относительной деформации ползучести εcr,ij

возможно путём подстановки выражения (2.16) в (2.14), которое ранее не могло быть
определено с достаточной степенью вследствие возможно развития остаточной деформации
в материала

εcr,ij = εij − εel,ij − α(T − T0)δij,

следовательно

εcr,ij = εij −
(
σij −

3ν

1 + ν
pδij

)
1

2G
− α(T − T0)δij (i, j = 1, 2, 3). (2.21)
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Компоненты выражения (2.19), представляющую собой наибольшее значение модуля,
называют функцией напряжений f ∗

ij

f ∗
ij =

3

2
(σij − pδij)− E∞εcr,ij (i, k = 1, 2, 3); f ∗

ij = f ∗
ji. (2.22)

Функцию напряжений f ∗
ij возможно получить в виде прямой зависимости

от интенсивности напряжений σij и полной относительной деформации εij путём
подстановки (2.21) в (2.22), при условии отсутствия какой-либо иной формы остаточной
деформации

f ∗
ij =

3

2

[(
1 +

G∞

G

)
σij −

(
1 + 2ν

E∞

E

)
pδij

]
+ αE∞(T − T0)δij − E∞εij

(i, j = 1, 2, 3). (2.23)

Наконец, обобщённое уравнение Максвелла может быть представлено в виде
зависимости только от интенсивности напряжений и полной относительной деформации
путём подставновки выражений (2.21) и (2.23) в (2.17), а также с учётом зависимости (2.13)

∂εij
∂t

=
1

2G

(
∂σij

∂t
− 3

1 + ν

∂p

∂t
δij

)
+ αδij

∂T

∂t
+

f ∗
ij

η∗
(i, j = 1, 2, 3), (2.24)

где обратная величина к коэффициенту начальной релаксационной вязкости окончательно
принимает следующий вид:

1

η∗
=

1

η∗0
exp

{
1

m∗ [γ
∗p+ |f ∗

rr|max]
}
. (2.25)

Поскольку функционально вязкость зависит экспоненциально от среднего
уровня напряжения p, а также от максимального уровня функции напряжений f ∗

ij,
выражение скорости полной относительной деформации (2.24) получается нелинейным,
соответственно поиск аналитического решения становится возможным при наложении
жёстких граничных условий и приоритет отдаётся численным методам решения при
помощи итераций.

2.1.3 Константы уравнения состояния, его линеаризация

Для решения задач по моделированию НДС тела при помощи уравнения Максвелла–
Гуревича используются шесть параметров, связанных с физическими уравнениями:

– определяющие упругие деформации — модуль упругости E и коэффициент
Пуассона ν, а также производный от них модуль сдвига G = E/ [2 (1 + ν)];
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– определяющие реологию материала — модуль высокоэластичности E∞, модуль
скорости m∗, коэффициент начальной релаксационной вязкости η∗0 и объёмный
коэффициент γ∗.

В случае полимеров значения перечисленных физико–механических параметров очень
сильно зависят от величины температуры T . Определение этих параметров теоретически
невозможно [105], они определяются по результатам макроскопического анализа и при
помощи обработки кривых ползучести или релаксации материала.

Первые два параметра E и ν определяются строением полимера на атомном уровне и
незначительно зависят от его надмолекулярной структуры.

Параметры реологической группы зависят от поведения слагаемых макромолекулу
полимера звеньев, возможностью их взаимными сдвигами и поворотами. Изменение
температуры приводит к существенным изменениям в подвижности структурных
элементов, в связи с чем модуль высокоэластичности E∞ значительно изменяет свою
величину.

Подобное значительное влияние температуры на свою величину проявляет и
коэффициент начальной релаксационной вязкости η∗0, поскольку он определяется
энергией активации и параметром времени t∗0.

В книге А.Л.Рабиновича приводится выражение, позволяющее произвести оценку
значения объёмного коэффициента γ∗

γ∗ =
9

2

(
α∗

β∗

)
1− 2ν

1 + ν

[
1 +

2

3

E∞

E
(1 + ν)

]
,

где α∗ и β∗ — структурные постоянные полимера.
Согласно приведённому выражению γ∗ определяется структурой полимера и уровнем

температурного воздействия, но значительно меньше, чем E∞.
Данные соображения также приводятся в исследованиях В.Ф.Бабича [16, 17], которые

легли в основу множества последующих трудов в области механики полимеров. Не смотря
на давность приведённых в открытой печати трудов В.Ф.Бабича, они в полной мере
могут быть использованы в настоящее время для исследования компонентов относительной
деформации упругой и ползучести, за исключения объёмного коэффициента γ∗.

Как говорилось ранее применительно к выражению релаксационной вязкости (2.25),
получение аналитического решения задач по моделированию НДС весьма затруднено,
практически невозможно, кроме отдельных частных случаев, поэтому исследователи
прибегают к использованию некоторых упрощений и приближений, к которым
относится метод линеаризации уравнений. Линеаризация используется для получения
приближённой качественной картины деформирования изделий из полимеров, особенно,
на первоначальном этапе времени. Количественное совпадение экспериментальных
данных с соответствующими теоретическими решениями возможно, как правило, только
в случае незначительных по величине уровней напряжений, значительно ниже значений,
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соответствующих их предельному состоянию [107]. Кроме этого, линеаризация может
применяться в случае отыскания приближённых значений искомых параметров, входящих
в уравнение состояния, что приводит к книжению общего объёма производимых
вычислений.

Одноосные задачи в условиях линейной высокоэластичности исследовались
Т.Алфреем [4], А.Ю.Ильинским [52, 53], А.Тобольским [134] и Д.Ферри [143]. В
подобных изысканиях система линеаризованных уравнений получают на основе
нелинейной теории, при условии, что модуль скорости m∗ стремится к бесконечно
большому значению, а, следовательно, коэффициент релаксационной вязкости η∗

стремится к коэффициенту начальной релаксационной вязкости η∗0, определённому при
некотором значении температуры:

m∗ −→ ∞, η∗ −→ η∗0 (T ) .

После определения переменного температурного поля, являющегося функцией
координат xi и времени t, возможно определение значения коэффициента начальной
релаксационной вязкости в соответствующих узлах в каждый момент времени

η∗0 = η
∗
0(xi, t),

что приводит к линейной пропорциональной зависимости скорости деформации от
интенсивности напряжений и значения относительной деформации (2.17), при этом
функциональная зависимость от времени и координат определяется законом изменения
температурного поля и представляется нелинейной.

Имеется что один способ упрощения уравнений, определяющих скорость изменения
деформаций ползучести, — помимо применения бесконечно большого значения модуля
скорости, использование постоянного значения коэффициента начальной релаксационной
вязкости, определённого при нормальных условиях:

m∗ −→ ∞, η∗ −→ η∗0 ≡ const.

Однако, столь радикальный подход имеет право на существование лишь при изучении
изотермических процессов, исключающих какое–либо изменение температурного поля
от нормальных условий. Даже в этом случае, согласно (2.19), необходимо учитывать
нелинейную функциональную зависимость коэффициента релаксационной вязкости не
только от температуры, но и от интенсивности напряжений, а также модуля скорости,
находящегося в сильной зависимости от температуры. В связи с вышесказанным
линеаризация уравнений не всегда может давать близкие к точным значениям результаты,
что ограничивает возможность её использования.
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2.1.4 Квазистатическое линейное растяжение (сжатие) полимерных стержней

В случае изучения центрального растяжения изотропного стержня вдоль оси x

справедлива запись
σ1 = σxx(t) = σx(t) и σi = 0 (i = 2, 3), (2.26)

где σxx(t) = σx(t)— интенсивность нормального напряжения в направлении оси x стержня,
представляющее собой в общем виде функцию от времени.

Поскольку напряжения в направлении осей, перпендикулярных к оси x, равны
нулю, всё последующие выкладки справедливы и для стержней цилиндрической формы,
растягиваемых (сжимаевых) вдоль их продольной оси.

При отсутствии относительных деформаций, определяемых градиентом
температурного поля, вынужденные деформации представляют собой только
относительные деформации ползучести материала. В этом случае выражение для
определения полной относительной продольной деформации может быть записано с
учётом (2.14)–(2.17):

εii = εel,ii + εcr,ii (i = x, y, z) , (2.27)

где компонента упругой относительной деформации εel,ii может быть определена на
основании закону Гука (1.8)

εel,xx =
σx

E
; εel,yy =

1

E
(−νσx) = −νεel,xx; εel,xy = 0. (2.28)

Скорость изменения значения относительной деформации ползучести теперь является
функцией только одной переменной — времени t, в связи с чем форма её записи меняется
с частной производной на полную:

dεcr,ij
dt =

(2− δij) f ∗
ij

η∗
i, j = x, y, z, (2.29)

где функция напряжений f ∗
ij в зависимости от направленности осей может быть записана:

f ∗
xx = σx − E∞εcr,xx; f ∗

yy = −
(
1

2
σx + E∞εcr,yy

)
; 2f ∗

xy = −E∞εcr,xy,

коэффициент релаксационной вязкости η∗ определяется

1

η∗
=

1

η∗0
exp

{[
γ∗σx

3
+ |f ∗

rr|max

] 1

m∗

}
.

Следовательно, коэффициент релаксационной вязкости η∗ в случае центрального
растяжения (сжатия) является прямой функциональной зависимостью от наибольшей по
абсолютной величине функции напряжений frr, в случае линейного одномерного состояния
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функция напряжений может определяться осевыми напряжениями, совпадающими с
главными, а, следовательно, принимают наибольшее значение из двух: fxx или fyy.
Об этом также говорит равенство нулю сдвиговых деформаций εxy, что следует из
выражения (2.29) при представлении его в конечно–разностной форме:

∆εcr,xy =
dεcr,xy
dt ∆t =

(2− 0) f ∗
ij

η∗
∆t = −E∞

η∗
· εcr,xy∆t. (2.30)

Уравнение (2.30) имеет единственное тривиальное решение ε∗xy ≡ 0 исключительно
при наличии однородных начальных условий.

Деформация ползучести в случае малых деформаций не может развиваться во
времени до бесконечности — имеется некоторая предельная величина, называемая
равновесной высокоэластической деформацией εcr,x,пред, к которой асимптотические
стремится деформация ползучести при времени стремящемся к бесконечности. Предельное
значение деформации ползучести определяется интенсивность возникающего в теле
напряжения:

εcr,x,пред =
σx

E∞
. (2.31)

Тогда предельное значение полной относительной деформации может быть определено
согласно выражению (2.27) и с учётом предельного значения деформации ползучести (2.31)

εx,пред = εel,x + εcr,x,пред =
σx

E
+
σx

E∞
= σx

(
1

E
+

1

E∞

)
. (2.32)

В дальнейшем удобно ввести приведённый модуль высокоэластичности, который
определяется зависимостью

Ecr,∞ =
E∞

1 + E∞/E
=

E

1 + E/E∞
=

EE∞

E + E∞
,

следовательно, выражение (2.32) принимает вид

εx,пред =
σx

Ecr,∞
. (2.33)

Для выражения деформаций, возникающих в поперечных направлениях, используют
выражение скорости продольной деформации ползучести (2.29), разделяя скорость в
направлении поперечной оси y на скорость в направлении продольной оси x

dεcr,yy
dt

dεcr,xx
dt

=

−
(
1

2
σx + E∞εcr,yy

)
σx − E∞εcr,xx

.
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Данное соотношение превращается в тождество только при условии выполнения
гипотезы неизменности объёма тела при развитии деформаций ползучести:

θcr = const → νcr = 0.5 → εcr,yy = −εcr,xx
2

. (2.34)

Полная относительная продольная деформация в направлении оси y на основании
выражения (2.27), с учётом (2.28) и (2.28) примет вид

εyy =

(
1

2
− ν

)
εel,xx −

1

2
εxx =

(
1

2
− ν

)
σx

E
− 1

2
εxx. (2.35)

Для удобства изложения дальнейших выкладок можно ввести дополнительный
параметр, называемый эффективным коэффициентом Пуассона νэфф, который, по
аналогии с «обычным» коэффициентом Пуассона равен отношение полных относительных
поперечной деформации к продольной с учётом знака:

νэфф = −εyy
εxx

, (2.36)

в этом случае с учётом эффективного коэффициента Пуассона (2.36), выражение (2.35)
запишется

νэфф = −
(
1

2
− ν

)
εel,xx

εxx
+

1

2
. (2.37)

При монотонном во времени процессе, как правило, выполняется соотношение

εel,xx

εxx
⩽ 1,

следовательно, из выражения (2.37) можно выделить предельные значения эффективного
коэффициента Пуассона:

νэфф = ν при εel,xx ≃ εxx;

νэфф =
1

2
ν при εel,xx ⩽ εxx,

окончательно
ν ⩽ νэфф ⩽ 1

2
.

Более точно определить конкретное значение νэфф не представляется возможным, так
как данный параметр существенно зависит от режима нагружения тела и длительности
процессов.

Соотношение (2.37) позволяет произвести сопоставление функций напряжений
относительно двух осей x и y. Функция напряжения в поперечном направлении будет
иметь запись

2f ∗
yy = − (σx − E∞εcr,x) = −f ∗

xx,
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следовательно, справледлино соотношение

∣∣f ∗
yy

∣∣ = |f ∗
xx|
2

.

Таким образом, при определении значения коэффициента релаксационной вязкости
в направлении оси y используется функция напряжения относительно оси x, т. е.
максимальная по абсолютному значению.

Резюмируя вышеизложенное, полная относительная деформация, полная поперечная
деформация и их компоненты (упругая и ползучесть) при линейном одноосном растяжении
(сжатии) вполне могут быть определены при вычислении только относительной продольной
деформации в направлении продольной оси x, вдоль которой приложены сила.

Сопоставляя между собой выражения (2.27)–(2.29) возможно записать окончательные
выражения, однозначно определяющие относительную продольную деформацию

εxx = εel,xx + εcr,xx;

εel,xx =
σx

E
dεcr,xx
dt =

f ∗
xx

η∗
;

1

η∗
=

1

η∗0
exp

{[
1

3
γ∗σx + |f ∗

xx|
]

1

m∗

}
,

(2.38)

где f ∗
xx = σx − E∞εcr,xx =

(
1 +

E∞

E

)
σx − E∞εxx.

Полную относительную продольную деформацию можно продифференцировать по
времени t, тогда её скорость может быть записана через f ∗

xx =

(
1 +

E∞

E

)
σx − E∞εxx из

выражения (2.38):

dεxx
dt =

1

E

dσx

dt +
f ∗
xx

η∗
, (2.39)

Таким образом, относительная продольная деформация определяется из совместного
решения независимых групп уравнений.

Что касается объёмного коэффициента γ∗, согласно А.Л.Рабиновичу [105], его
допускается опускать, т. е. γ∗ → 0, поскольку его влияние в общий уровень коэффициента
релаксационной вязкости η∗ оказывается весьма незначительным.

Следующим этапом после определения всех составляющих относительной деформаций
по всем направлениям осей x, y, z, производят определение перемещений и их скоростей в
толще тела
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εxx =
∂u

∂x
→ u =

xw
0

εxx dx;

υx =
∂u

∂t
→ υx =

xw
0

(
∂εxx
∂t

)
dx.

(2.40)

Аналогично поступают с компонентами поперечных деформаций

εyy =
∂v

∂y
; υy =

∂v

∂t
.

Выражение (2.40) справедливо и в случае изучения сложного неоднородного
деформирования, когда и напряжения, и деформации являются функциями двух
переменных (x, t), что позволяет использовать приведённые соотношения для
моделирования реального процесса изменения НДС в теле его квазистатической
постановкой.

2.1.5 Релаксация напряжений в элементах конструкций из полимеров

С практической точки зрения наиболее интерес процесс снижения во времени
интенсивности напряжения при постоянстве полной относительной деформации за счёт
роста составляющей ползучести и, как следствие, снижения упругой компоненты. Т. е.
при релаксации

εxx = const = εc. (2.41)

С учётом (2.41) выражение (2.39) примет форму

dσx

dt = −E

η∗0
f ∗
xx exp

{[
1

3
γ∗σx + |f ∗

xx|
]

1

m∗

}
, (2.42)

где функция напряжений f ∗
xx определяется при помощи выражения (2.38)

f ∗
xx =

(
1 +

E∞

E

)
σx − E∞εxx → df ∗

xx

dt =

(
1 +

E∞

E

) dσx

dt ,

с начальным условиями: при t = 0 → σx = σx,0.
С учётом (2.42)

df ∗
xx

dt = −E + E∞

η∗0
exp (b∗εc) f ∗

xx exp
∣∣∣∣f ∗

xx

m∗
0

∣∣∣∣ , (2.43)
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где введены обозначения

m∗
0 = m∗

/1 + γ∗ signσx

3

(
1 +

E∞

E

)
 и b∗ =

E∗
∞γ

∗

3m∗ .

В случае релаксации напряжений при линейном НДС входящий в выражений (2.43)
множитель (b∗εc) представляет совой постоянную величину, поскольку согласно (2.41)
значение полной деформации не меняется εc = const.

В своей работе А.Л.Рабинович [105] показал, что дальнейшие выкладки удобно
производить если ввести некоторую дополнительную функции в виде экспоненты

Ψ(x) = x expx, (2.44)

которая там же подробно табулирована с шагом 0.01 и приводятся дополнительные её
свойства. При этом

d [−Ei(−x)]

dx = −x−1exp(−x).

Подставляя функцию Ψ(x) из выражения (2.44) в (2.43), получаем

t =
η∗0

E + E∞
exp (−b∗εc) [−Ei(−ξ∗) + Ei(−ξ∗0)] , (2.45)

где также дополнительно вводится переменная ξ

ξ∗ =

∣∣∣∣f ∗
xx

m∗
0

∣∣∣∣ = |(1 + E∞/E)σx − E∞εc|
m∗

0

. (2.46)

Значение функции (2.46) значительно превышает единицу (ξ∗ ≫ 1), поскольку
функция напряжений f ∗

xx гораздо больше модуля скорости m∗
0. Следовательно, для

получения примерного численного решения (2.45) можно применить асимптотический ряд

−Ei(−x) =
exp(−x)

x

n∑
k=0

k!

(−x)k
, n → 0.

Если ограничиться лишь одним первым членом ряда, то решение (2.45) будет иметь
вид

t =
η∗0

E + E∞
exp (−b∗εc)

[exp(−ξ∗)
ξ∗

− exp(−ξ∗0)
ξ∗0

]
. (2.47)

При изучении длительных процессов во времени их удобно представлять с помощью
полулогарифмических координат. Для перехода к полулогарифмическим координатам
производят логарифмирование выражения (2.45)
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lg t

t0
= − b∗εc

ln 10 + lg η∗0
(E + E∞) t0

+ lg [−Ei(−ξ∗) + Ei(−ξ∗0)] , (2.48)

где t0 — масштабный коэффициент времени (1 с или 1мин и т. д.).
На рисунке 2.3 представлена качественная картина изменения интегральных кривых

функции напряжений (а) и интенсивности напряжения (б) в стержне во времени.

а б

Рисунок 2.3 — Характер изменения интегральных кривых во времени при релаксации напряжений
в стержне (одноосное напряжённое состояние): а — функция fxx(t); б — напряжение σx(t)

На основании произведённых выкладок (2.45) и (2.48) были решены задачи
релаксации напряжений и построены соответствующие теоретические кривые,
приведённые на рисунке 2.4 для некоторых сочетаний физико–механических параметров
при их вариации. Кривые приведены в двух координатных системах: (σx ,t) и (σx, lg t).

Представленные на рисунке 2.4 графики уменьшения интенсивности напряжения в
стержне с течением времени по своему характеру полностью соответствуют типичным
кривым релаксации, представленным ранее на рисунках 2.3. Характер изменения
подобных кривых подробно были описаны А.Л.Рабиновичем [105]. Анализ полученных
графиков в полулогарифмической системе координат показывает, что они имеют
два горизонтальных участка (один — в начале релаксационного процесса, второй —
асимптотически приближается к некоторому конечному значению при стремящемся
к бесконечности времени ), а также одну точку перегиба. Значение наименьшей
интенсивности напряжения, к которой стремятся графики в предельном состоянии, при
времени стремящемся к бесконечности, может быть определён из условия ξ∗ → 0. Этот
предел определяется:

σmin = E∞ε
∗
max = E∞ε

∗
c (2.49)

и соответствует «нижнему» пределу релаксации напряжений.
Фактически деформации ползучести развиваются в материале при любом факторе,

вызывающем появление внутренних напряжений. Если речь идёт о релаксации
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а

б

Рисунок 2.4 — Теоретические интегральные кривые релаксации напряжений: а — в координатах
ε, t; б — в полулогарифмических координатах ε, lg(t/t0). Полная относительная деформация:

1 — εc = 1.5 · 10−5; 2–5 — εc = 1 · 10−5. Значения модуля высокоэластичности: 1 и 2 —
E∞ = 3000МПа; 3, 4 и 5 — E∞ = 600МПа. Модуль упругости E = 3000МПа. Модуль скорости
m∗ = 3МПа. Коэффициент начальной релаксационной вязкости η∗0 = 0.4 · 106МПа. Объёмный

коэффицент: 1, 2 и 3 — γ∗ = 0; 4 — γ∗ = 1; 5 — γ∗ = 3

напряжений, то из (2.38) можно записать деформации ползучести, развивающиеся в
теле и компенсирующие упругую компоненту:

εcr,x = εx − εel,x = εc −
σx

E
.

С учётом выражения для определения нижнего предела релаксации напряжений (2.49)
σmin, а также начального условия
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εcr,0 ≪ εcr,x ≪ εcr,max,

εcr,0 = εc −
σx,0

E
,

εcr,max = εc −
σmin
E

=
εc

1 +
E∞

E

.

(2.50)

Здесь подразумевается, что в начальный момент времени полная нагрузка приложена
в очень короткий период времени, практически мгновенно. В этом случае деформации
ползучести не успевают развиться, а полная деформация в этот момент времени
представляет собой упругую работу материала, т. е. σx,0 = Eεc, εcr,0 = 0.

Большой интерес представляет собой изучение кривых — релаксации полимера с
точки зрения поиска значения углового коэффициента наклона касательной к диаграмме
релаксации полимера в точке, где график перегибается, выпуклость меняет знак. Для этого
производится дифференцирование (2.48) выражения логарифмического распределения
напряжений (dξ∗

dy∗
)
ξ∗=ξ∗II

= − 1

1 +
1

ξ∗п

, (2.51)

где
y∗ = ln t

t0
= lg t

t0
ln 10.

Следовательно, возможно определение значения координат точки перегиба кривой
релаксации. При изучении и анализе кривых релаксации, подобных тем, что приведены на
рисунке 2.4, через ξ∗0 при решении корней системы [105]

[−Ei (−ξ∗п) + Ei (ξ∗0)] (1 + ξ
∗
п) exp ξ∗п = 1. (2.52)

возможно определение значение ординаты точки перегиба

ξ∗п =
1

m∗
0

∣∣∣∣(1 + E∞

E

)
σп − E∞ε0

∣∣∣∣
Поиск корней может быть произведён множественными способами — от графического

и заканчивая простым перебором. Подробно решение рассматриваться не будет, его можно
найти в [105], поскольку для определения физико–механических параметров в диссертации
разработана и представлена иная методика, основанная на использовании программных
пакетов для обработки массива данных.

После определения корней уравнения производят замену ξ∗ и y∗ на полученные
значения, после чего выражение (2.52) принимает вид

m̄∗
0 =

∣∣k̄∣∣ (1 + 1

ξ∗п

)
, (2.53)
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где
k̄ =

k

ln 10; k =
∆σx

∆ lg
(

t

t0

) .

Следовательно, искомый параметр k, фактически представляющей собой тангенс
угла наклона касательной, проведённой к функции напряжений σ от времени lg t в точке, в
которой произошёл перегиб кривой релаксации. Размерной коэффициента k такая же, как
и напряжения, МПа или его производные. Для определения коэффициента необходима
обработка кривой релаксации, построенной по соответствующим экспериментальным
данным. Левая часть выражения (2.53), параметр m̄∗

0 имеет вид

m̄∗
0 =

m∗
0

1 +
E∞

E

=
m∗

1 +
E∞

E
+ γ∗ sign σx

3

.

Как видно из представленного выражения в случае E∞/E ≪ 1, что характерно для
сетчатых полимеров и полимеров со значительной степенью сшивки, а также в случае с
малым значением объёмного коэффициента γ∗, справедливо соотношение m̄∗

0 ≈ m∗.
Имея экспериментальные данные релаксации напряжений σx(t), с учётом εx = const,

а также предполагая, что угловой коэффициент k уже был определён согласно (2.53),
находят значение m̄∗

0. Допускается на первом этапе принять m̄∗
0 =

∣∣(k̄)∣∣. Если значения
модуля высокоэластичности E∞ и модуля скорости m∗ уже определены, то значение
параметра m̄∗

0 может быть значительно уточнено методом перебора по (2.53) через
соотношение E∞/m∗ с учётом ξ∗п, поскольку

ξ∗ =

∣∣∣∣(1 + E∞

E

)
σx

m∗
0

− E∞

m∗
0

εc

∣∣∣∣ .
А.Л.Рабинович в своей книге [105] определял объёмный коэффициент γ на основе

выражения (2.53) путём сопоставления угловых коэффициентов k множества кривых
релаксации. При этом было указано, что этот способ малопригоден для научных
исследований, поскольку весьма незначительные погрешности в найденных значениях k

вызывают значительные погрешности в поиске γ∗. Поэтому в практике коэффициентом
γ∗, с учётом его малого влияния на скорость ползучести, пренебрегают.

На рисунке 2.5 приведены результаты экспериментов по изучении релаксации
напряжений в теле, изготовленном из полимерного связующего ЭДТ–10. Если произвести
поиск физико–механических параметров уравнения Максвелла–Гуревича, а затем
построить по этим данным теоретические кривые, то совпадение экспериментальных с
теоретическими кривыми будет удовлетворительным только в области малых времён, как
правило, не более 100 суток. Далее расхождение может стать очень весомым, поскольку в
полимере начинают развиваться деформации второго спектра времён релаксации.
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а б

Рисунок 2.5 — Экспериментальные диаграммы релаксации напряжений эпоксидного связующего
ЭДТ-10: Температура T : а — 20℃; б — 80℃. Величина полной деформации ε = const: 1 — 0.035;
2 — 0.027; 3 — 0.019; 4 — 0.015; 5 — 0.012; 6 — 0.008; 7 — 0.034; 8 — 0.024; 9 — 0.018; 10 — 0.01

2.2 Определение постоянных в уравнении состоянии

2.2.1 Методика определения постоянных в уравнении состояния

Под руководством профессора Б.М.Языева его ученики разработали и
совершенствовали подходы к определению физико–механических параметров полимеров
как функций от некоторых факторов путём обработки кривых ползучести или релаксации
при различных условиях работы. Автором настоящей диссертационной работы были
изложены первоначальные материалы в трудах [44, 187], другие ученики профессора
Б.М.Языева опубликовали научные труды по схожей тематике в работах [42, 185]. Если
прибегать дополнительно к методам нелинейной оптимизации массива экспериментальных
данных, то данный подход отражён в работе [169]

Благодаря своему широкому распространению, хорошей изученности и наличию в
открытой печати экспериментальных данных, содержащих кривые релаксации, первым
полимером на котором были опробованы методики определения физико–механических
параметров стал поливинилхлорид (далее — ПВХ). Столь широкое распространение ПВХ
(доля рынка полимеров, используемых в качестве конструкционных материалов, для
ПВХ составляет до 70%) материал обязан своим хорошим эксплуатационным качествам
(высокая химическая стойкость, огнестойкость и т. д.).

В процессе эксплуатации конструкции с течением времени происходит развитие
деформаций ползучести в её элементах из полимерных материалов. В самих конструкциях
при этом может происходить перераспределение интенсивности напряжений. Кроме того,
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развитие ползучести в одних элементах конструкции с понижением в них интенсивности
напряжения (релаксация) может приводить к повышению интенсивности напряжения в
других элементах конструкций за счёт перераспределения внутренних сил. В связи с этим
о полноценной оценке прочности и жёсткости конструкции на длительных интервалах
времени нельзя судить опираясь исключительно на испытания полимеров при мгновенном
нагружении — его упругой работе; необходимо полноценно моделировать развитие
деформаций ползучести при различных внешних факторах и сочетаниях усилий.

Несколько ранее упоминалось, что известно достаточно много работ по изучению
явления ползучести в полимерах. Зачастую подобные работы публикуют качественную
картину ползучести, однако произвести количественную оценку по результатам
подобных исследований не представляется возможным. Среди работ, объектом
исследования которых являлся ПВХ, и которые могут лечь в основу данных для
определения физико–механических параметров, необходимо отметить Е.В.Соловьеву с
её публикациями [125, 126]. Из этих трудов были заимствованы кривые релаксации ПВХ
при различных температурных режимах (рисунок. 2.6) при постоянном уровне полной
относительной продольной деформации ε = const = 0.03 для последующих обработки и
анализа с целью получения упругих и реологических параметров, входящих в уравнение
Максвелла–Гуревича.

Рисунок 2.6 — Кривые релаксации вторичного ПВХ

В таблице 2.1 представлена результаты обработки графических кривых,
представленных на рисунке 2.6, и перевод значений в формат распределения интенсивности
напряжения при определённой температуре в конкретный момент времени (σ(t)).
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Таблица 2.1 — Интенсивность напряжения при постоянном уровне деформации ε = const = 0.03 и
определённой температуре в различные моменты времени (σ(T, t)) для ПВХ

В своих публикациях Е.В.Соловьёва [125, 126] применяла интегральное уравнение
Больцмана–Вольтера для аппроксимации полученных кривых:

σ = σ0

[
1−

tw
0

T (τ) dτ

]
,

где σ — интенсивность напряжения в очередной момент времени t; σ0 — интенсивность
напряжения при условно мгновенном загружении образца t = 0; τ — переменная времени,
значения которой варьируются 0 до t; T (τ) — ядро релаксации, имеющее довольно
сложный вид:

T (τ) = − S

kBm

[
1

α lnα+ (1− α) ln(1− α) −
1

ln 0.5

]
,

где m = m∗ r∞
0

T ∗(τ) dτ; T ∗(τ) — переменная часть ядра; kB — постоянная Больцмана; m∗

— общее число кинетических единиц (релаксаторов и нерелаксаторов в единице объёма);
α — доля релаксаторов в общем числе кинетических единиц; S0 — величина начальной
энтропии системы.

Параметр α является функцией от τ:

α =
1(

1 +
k∗

β
τ

)β ,
где k∗ = kn−1; β = 1

n−1
; n—порядок реакции взаимодействия релаксаторов; k—постоянная

скорости этого взаимодействия.
Использование интегральной формы записи уравнения связи имеет как

положительные, так и отрицательные стороны. К положительным можно отнести
хорошую аппроксимацию массива опытных данных, качественное и количественное
согласование теоретических кривых с экспериментальными данными при изучении
ползучести и релаксации. К недостаткам относится то, что все положительные
моменты справедливы в случае стационарных процессов, не изменяющихся во времени —
постоянные внешние силы, постоянная температура, постоянный уровень деформации и
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т. д., что далеко не всегда соответствует реальной работе материала и представляет собой
некое идеализированное состояние. В связи с этим для моделирования переменных во
времени факторов оказывается более предпочтительна дифференциальная форма записи,
хоть она и имеет несколько больше переменных, подлежащих определению.

Далее подробно приводится методика по определению упругих и реологических
параметров, входящих в уравнение Максвелла–Гуревича на примере обработки кривой
релаксации напряжений при различных температурах для ПВХ, изображённой на
рисунке 2.6). При этом некоторые моменты будут совпадать с приведёнными ранее
выкладками для релаксации напряжений в разделе 2.1.5.

Поскольку диаграммы релаксации ограничиваются относительно непродолжительным
интервалом времени (менее 100 ч), определяться будут только физико–механические
параметры, связанные с первым, старшим, спектром времён релаксации полимера. В
случае линейного напряжённого состояния и при допущения гипотезы о незначительности
объёмного коффициента γ∗, уравнение Максвелла–Гуревича записывается

dεcr
dt =

f ∗

η∗
; (2.54)

f ∗ = σ− E∞εcr;

η∗ = η∗0 exp
{(

−|f ∗|
m∗

)}
. (2.55)

При этом каждое значение температуры рассматривается по-отдельности. В рамках
каждого значения температуры напряжение принимается только как функция от времени,
то есть σ(t), на каждом интервале времени задача рассматривается как квазистатическая.
Полная относительная продольная деформация ε образца также складывается из двух
компонент: упругой деформации и деформаций ползучести

ε = εel + εcr =
σ(t)

E
+ εcr = const = 0.03. (2.56)

Нагружение образца предполагается условно мгновенным, поэтому в первый момент
времени t = 0 ч считается, что деформация позучести не успевает развиться, а вся
полная относительная деформация состоит только из упругой компоненты, благодаря чему
значение модуля упругости полимера может быть определено следующим образом:

E =
σ(0)

ε
=
σ(0)

0.03
.

Следующим шагом на каждом «узле» времени возможно определить значение
деформации ползучести из выражения (2.56), поскольку уровень напряжения известен и
представляет собой исходные данные, а модуль упругости был определён на предыдущем
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шаге
εcr(t) = ε− εel = ε−

σ(t)

E
. (2.57)

Аналогично выражению (2.16) введём для удобства переменную, обозначающую
скорость роста деформаций ползучести υcr:

υcr =
dεcr
dt ,

С одной стороны, скорость деформаций ползучести υcr определяется выражением (2.54),
с другой — при наличии массива деформаций ползучести в каждый момент времени,
может быть определена аппроксимацией этих данных. Для этого на некоторой сетке,
каждый узел которой ti соответствует конкретному моменту времени t из таблицы 2.1.
Значение производной деформации в каждом узле υi, интенсивность напряжения σi,
значение деформации ползучести в каждом узле времени εcr,i. Количество узлов Nt.

Используя имеющийся массив данных со значения деформации ползучести εcr,i,
берутся радом стоящих узла (i − 1, i, i + 1), значение деформации ползучести в которых
может быть аппроксимирована при помощи полинома второй степени

εcr,i = polyfit = at2 + bt+ c,

где polyfit—функция пакета Octave (MatLab) по подбору коэффициентов a, b и c полинома
на основе значений функции в трёх узлах.

Тогда скорость функции в этих узлах равна первой производной полинома по времени

υcr,i = 2at+ b.

Одним из критериев, по которым отбирались графики для анализа по
рассматриваемой методике, было выход на горизонтальное плато в последней точке
кривой релаксации, поскольку тогда можно принять, что в соответствующем узле tNt

скорость деформации равна нулю, т. е.

υNt = 0

Тогда из выражения (2.54) возможно определение значения модуля высокоэластичности
полимера:

f ∗ = σNt − E∞εcr,Nt = 0 → E∞ =
σNt

εcr,Nt

. (2.58)

В текущий момент определены два параметры: модуль упругости E и модуль
высокоэластичности полимера E∞.
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Если брать промежуточные узлы, а не крайний последний, то из выражения (2.54)
возможно представить зависимость коэффициента релаксационной вязкости в каждом узле
от уже определённых функции напряжений и скорости деформации ползучести в них:

η∗i =
f ∗
i

υi
, f ∗

i = σi − E∞εcr,i;

после чего в выражении (2.55) становится известна левая часть. Для обработки данных в
правой части выражения (2.55) прологарифмируем его

lnη∗ = ln
[
η∗0 exp

(
−|f ∗|

m∗

)]
= lnη∗0 −

|f ∗|
m∗ ; (2.59)

Производится замена a = − 1

m∗ и b = lnη∗0, тогда выражение (2.59) принимает вид

lnη∗ = |f ∗| · x+ b,

что аналогично полиному первой степени

y = ax+ b, (2.60)

где y = lnη∗ и x = |f ∗|.
Коэффициенты a и b полинома (2.60) также могут быть получены при помощи

функции polyfit в пакете Octave (MatLab), после чего определяются параметры m∗ и η∗0:

m∗ = −1

a
; η∗0 = exp(b).

Полученная в результате выкладок зависимость натурального логарифма
коэффициента релаксационной вязкости и функции напряжений (ln (η∗)–|f ∗|) представлена
на рисунке 2.7 и отражает справедливость выбранного выражения (2.60). Кривая при
этом имеет множественные отклонения от линии тренда, проведённой через значения в
узловых точках. Данные несовпадения связаны с множеством фактором, в числе которых
точность определения интенсивности напряжения от времени по графической кривой,
которая легла в основу для обработки, небольшое количество узловых точек и т. д.

Полные результаты обработки кривых релаксации и полученные по ним значения
физико–механических параметров полимера при различных температурных режимах
приведены в таблице 2.2 и графически представлены на рисунке 2.8.

Имея кривые распределения физико–механических параметров (рисунок 2.8)
возможна их аппроксимация при помощи полиномов или иных функций, обеспечивающих
наилучшее соответствие с экспериментальными данными:
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Рисунок 2.7 — Изменение величины η∗ в зависимости от f∗

Таблица 2.2 — Упругие и релаксационные параметры вторичного ПВХ, определённые при
различных температурах

E(T ) = −0.2393T 2 + 8.3357T + 1402.6 [МПа] R2 = 0.976;

E∞(T ) = −0.0575T 3 + 11.095T 2 − 732T + 16618 [МПа] R2 = 0.9986;

η∗0(T ) = 44.78 · 105e−0.075T [МПа · мин] R2 = 0.989;

m∗(T ) = −0.0794T + 15.134 [МПа] R2 = 0.871.

(2.61)

Как хорошо видно из выражения (2.61), устанавливающего функциональные
зависимости параметров уравнение Максвелла–Гуревича от температуры, наименьшую
зависимость демонстрирует модуль скорости m∗, поскольку его полином первой степени
— уравнение прямой.

Оценить достоверность полученных параметров (2.61) уравнения Максвелла–
Гуревича можно путём построения на их основе теоретических кривых релаксации
и сопоставлением их с экспериментальными данными. Графическое отображение
теоретической кривой и экспериментальных данных приведено на рисунке 2.9. Хорошо
видно, что наилучшее совпадение двух кривых наблюдается при температурных режимах
20℃, 30℃ и 60℃.

Кроме уже рассмотренных вопросов релаксации, подобная задача будет подробно
рассмотрена в параграфе 4.1.2, на стр. 129.
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Рисунок 2.8 — Зависимость физико–механических параметров вторичного ПВХ от температуры:
a — модуля упругости E; б — модуля высокоэластичности E∞; в — модуля скорости m∗;

г — коэффициента начальной релаксационной вязкости η∗0

2.2.2 Методика расчета задач с учётом деформаций ползучести материала

Как говорилось ранее, решение задач по моделированию НДС тел с учётом развития
деформаций ползучести аналитически практически не представляется возможным
за исключением отдельных частных случаев. В связи с этим все решения задач по
моделированию полимерных тел приводятся при помощи двух численных методов:
МКР и МКЭ. Ещё больше усложняет решение наличие дополнительных вынужденных
деформаций, обусловленных наличием температурного или иного физического поля,
введение различных добавок в материал и т. д.Общий алгоритм решения справедлив для
обоих этих методов.

Для начала необходимо повторно отметить, что имеется ряд допущений.
Во–вервых, при наличии температурного поля задачи решаются несвязные —

отдельно определяется распределение этого поля в теле, отдельно — моделируется
НДС с учётом деформаций ползучести и наличии температурного градиента; влиянием
интенсивности напряжений или развитием деформаций на параметры, связанные с
тепловым расчётом, пренебрегают.
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Рисунок 2.9 — Сопоставление экспериментальных кривых с результатами теоретических расчётов

Во–вторых, на каждом «узле» времени рассматривается квазистатическая задача,
то есть скоростью изменения процессов на исследуемом моменте времени пренебрегают,
исследуется статическое состояние системы. Для этого вводится сетка, каждый узел
которой ti соответствует определённому моменту времени

ωt =
{
t1 = 0 t2 . . . ti−1 ti ti+1 . . . tNt−1 tNt

}
; i = 1 . . . Nt,

где Nt — количество узлов моментов времени на сетке ωt; tNt — значение момента времени
на последнем узле.

Общий алгоритм решения задачи представляет ряд этапов:
I Определение температурного поля в теле (или иного физического поля, распределения

добавок в теле и т. д.) в текущий момент времени.
II Определение физико–механических параметров материала как функции от физических

полей в нужных узлах.
III Определение НДС в теле в текущий момент времени.
IV По значения интенсивности напряжений определяют скорость деформаций в текущий

момент времени.

62



V Определение уровня деформаций в следующий момент времени.

при t1 = 0 εcr = 0;

εcr(ti+1) = εcr(ti) +
∂εcr(ti)(t)

∂t
(ti+1 − ti).

VI Алгоритм повторяется с п.I для следующего периода времени вплоть до достижения
последнего узла на сетке времени.

2.2.3 Физико–механические параметры полимеров в различных источниках

Как видно из проведённых ранее данных по исследованию физико–механических
параметров, они, параметры, очень сильно зависят от многих факторов, в том числе от
температуры. В связи с этих даже небольшие расхождения в экспериментальных данных
у разных исследователей приводят к значительному отличию итоговых результатов. Этим
и объясняется то, что в различных источниках физико–механические параметры для
одного и того же полимера сильно отличаются. Кроме того, параметры могут зависеть
от интенсивности напряжения, а итоговые функциональные выражения этого фактора
лишены.

В настоящей диссертационной работе основным полимером, используемым
для моделирования НДС цилиндров, является эпоксидное связующее термического
отверждения ЭДТ–10 (далее — ЭДТ–10). Связано это с тем, что свойства ЭДТ–10 в
целом хорошо изучены, имеются многочисленные труды, в которыми можно сопоставлять
частные решения для оценки полученных результатов, а также доступность материалов
для самостоятельного изготовления образцов из ЭДТ–10.

Одним из ключевых трудов по изучению физико–механических параметров
полимеров является диссертационная работа В.Ф.Бабича [16], которая легла в основу
многих изысканий, а также использована следующими учёными, упоминания которых
встречается в настоящей диссертационной работе: проф. Р.А.Турусовым [137] и проф.
Б.М.Языевым [159]. В работе В.Ф.Бабича [16] были получены следующие параметры
уравнения Максвелла–Гуревича для ЭДТ–10:
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E = 4000 exp
(
− exp TK − 339

36.7

)
[МПа] ;

E∞1 =

2.4 · 106 1

TK

− 6120 [МПа] для TK < 350K;

2.23TK − 640 [МПа] для TK ≥ 350K;

E∞2 = 0.1E∞1;

m∗
1 = m∗

2 = −0.0155TK + 7.73 [МПа] ;

η∗01 = 36 000 exp
(
9 500

TK

− 20

)
[МПа · с] ;

η∗02 = 36 000 exp
(
35 400

TK

− 90

)
[МПа · с] ;

ν = const = 0.37.

(2.62)

Были определены значения переменных уравнения Максвелла–Гуревича для ряда
температурных режимов согласно выражения (2.62). Результаты приведены в таблице 2.3

Таблица 2.3 — Физико–механические параметры ЭДТ–10, определённые согласно
выражению (2.62)

В своей монографии проф. Р.А.Турусов [137] использовал иную форму записи
функциональной зависимости параметров, нежели в выражении (2.62):
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E = −18.2TK + 8200 [МПа] ;

E∞1 =

2.4 · 106 1

TK

− 6120 [МПа] для TK < 370K;

2.23TK − 458.6 [МПа] для TK ≥ 370K;

E∞2 = 0.1E∞1;

m∗
1 = m∗

2 = −0.0155TK + 7.73 [МПа] ;

η∗01 = 36 000 exp
(
9 500

TK

− 21

)
[МПа · с] ;

η∗02 = 36 000 exp
(
35 400

TK

− 91.5

)
[МПа · с] ;

ν = const = 0.37.

(2.63)

Были определены значения переменных уравнения Максвелла–Гуревича для ряда
температурных режимов согласно выражения (2.63). Результаты приведены в таблице 2.4

Таблица 2.4 — Физико–механические параметры ЭДТ–10, определённые согласно
выражению (2.63)

При этом несколько ранее проф. Р.А.Турусов в своей диссертационной работе [139]
использовал уже третью функциональную зависимость параметров
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E = −1.82TK + 820
[ кг
мм2

]
;

E∞1 = 2.4 · 105 1

TK

− 612
[ кг
мм2

]
;

E∞2 = 0.1E∞1;

m∗
1 = m∗

2 = −1.55 · 10−3TK + 0.773
[ кг
мм2

]
;

η∗01 = exp
(
9.5 · 103 − 21

) [кг · ч
мм2

]
;

η∗02 = exp
(
3.54 · 104 − 91.5

) [кг · ч
мм2

]
.

(2.64)

Были определены значения переменных уравнения Максвелла–Гуревича для ряда
температурных режимов согласно выражения (2.64). Результаты приведены в таблице 2.5

Таблица 2.5 — Физико–механические параметры ЭДТ-10, определённые согласно
выражению (2.64)

В этой же диссертационной работе [139] профессором Р.А.Турусовым была
рассмотрена четвёртая форма функциональной записи параметров от температуры,
однако, в этот раз она содержит выражения только для первого, старшего, спектра времён
релаксации полимера для ЭДТ–10:

E = −1.75TC + 352.5
[ кг
мм2

]
;

E∞1 = −3TC + 315
[ кг
мм2

]
;

m∗
1 = −0.0011TC + 0.475

[ кг
мм2

]
;

η∗01 = 10 443 exp (−0.0275TC)
[кг · ч
мм2

]
.

(2.65)

В формулах (2.62)–(2.65) использованы обозначения значений температуры: TK — в
градусах Кельвина; TC — в градусах Цельсия.
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Были определены значения переменных уравнения Максвелла–Гуревича для ряда
температурных режимов согласно выражения (2.65). Результаты приведены в таблице 2.6

Таблица 2.6 — Физико–механические параметры ЭДТ-10, определённые согласно
выражению (2.65)

Проведённый анализ определения физико–механических параметров в таблицах 2.3–
2.6 показал, что даже в исследованиях одного автора в разных ситуациях используются
функциональные зависимости для определения параметров, входящих в уравнение
Максвелла–Гуревича, дающие значительно отличные друг от друга результаты. Самые
существенные отличия в таблицах значений одного и того же параметра можно выделить
для модуля высокоэластичности E∞, где в выражениях (2.64) и (2.65) он принимает
отрицательное значение при температуре 120 ◦C, а также коэффициенте начальной
релаксационной вязкости и при первой спектре времён релаксации η∗01, и при втором
η∗02. Всё это говорит о том, что для полноценных исследований ползучести полимера
необходимо более тщательно подходить к получению используемых в расчёте значений
физико–механических параметров.

2.2.4 Лабораторные испытания по определению физико–механических параметров ЭДТ–
10

Для оценки того, какие из приведённых значений вычисленных параметров ближе
к реальной работе материала, в лаборатории кафедры «Сопротивление материалов»
из эпоксидного связующего ЭДТ–10 были изготовлены лопатки стандартного размера
(рабочая часть 50×10×4мм), в дальнейшем они были испытаны на релаксацию напряжения
в универсальной машине WP–300 с компьютерной системой сбора и обработки данных
GUNT при температурном режиме 20℃. Испытания проводились при пяти значениях
полной относительной продольной деформации: 0.008, 0.012, 0.019, 0.027 и 0.035. По
результатам опытных данных построены кривые, показанные пунктирной линией на
рисунке 2.10.
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Рисунок 2.10 — Экспериментальные кривые (пунктирная линия) и теоретические (сплошная
линия) релаксации напряжений в стержне из эпоксидного связующего ЭДТ–10

Полученные опытные данные были обработаны и результаты определения физико–
механических параметров приведены в таблице 2.7.

Таблица 2.7 — Физико–механические параметры ЭДТ–10, определённые в результате
лабораторных испытаний релаксации напряжений в стержне; ε0 — постоянный уровень
относительной продольной деформации образца

Восстановленные теоретические кривые релаксации напряжения по переменным
уравнения Максвелла–Гуревича из таблицы 2.7 представлены сплошной линией на
рисунке 2.10.

Общий порядок значений полученных параметров близок к данным эпоксидного
связующего ЭДТ–10, приведённых ранее в параграфе 2.2.3, что также дополнительно
говорит в пользу достоверности представленных методик обработки кривых. При
этом наилучшее совпадение наблюдается при наименьшем уровне полной относительной
деформации ε0 = 0.008, т. е. в случае, когда секущая прямая модуля упругости на графике
напряжений–деформаций наиболее полно приближается к касательной в начальной точке.
Связано это с тем, что нагружение происходит условно мгновенно, для достижения
большего уровня требуется несколько более длительный период роста нагружения, во
время которого, пусть и незначительно, но развиваются деформации ползучести.
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2.2.5 Определение физико-механических свойств материала как функции нескольких
факторов

В работе А.Л.Рабиновича [105] приводятся экспериментальные кривые испытания на
релаксацию напряжения эпоксидного связующего ЭДТ–10 при различных температурных
режимах T и уровнях начальной полной относительной деформации ε0. Эти кривые были
обработаны и получены упругие и реологические параметры, значения которых приведены
в таблице 2.8. Здесь ε0 и σ0 — уровень полной относительной деформации и интенсивность
напряжения, соответственно, в начальный момент времени t1 = 0.

Таблица 2.8 — Физико–механические параметры ЭДТ–10, полученные по результатам опытных
данных релакскации напряжений из работы А.Л.Рабиновича [105]

На основании полученных параметров в таблице 2.8 были построены теоретические
кривые и проведено сравнение к экспериментальными данными на рисунке 2.11.

Приведённые в таблице 2.8 физико–механические параметры аппроксимированы при
помощи полинома, имеющего 4й порядок относительно уровня полной относительной
продольной деформации ε0 и 3й порядок относительно температуры T (рисунок 2.12):
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а б

в г

Рисунок 2.11 — Экспериментальные данные и теоретические кривые релаксации напряжений в
стержне из ЭДТ–10, на основании параметров из таблицы 2.8 при различных температурах:

а — T = 20 ◦C; б — T = 45 ◦C; в — T = 60 ◦C; г — T = 80 ◦C

f(ε, T ) = p00 + p10 · ε+ p01 · T + p20 · ε2 + p11 · ε · T+

+ p02 · T 2 + p30 · ε3 + p21 · ε2 · T + p12 · ε · T 2 + p03 · T 3+

+ p40 · ε4 + p31 · ε3 · T + p22 · ε2 · T 2 + p13 · ε · T 3. (2.66)

Значения коэффициентов выражения (2.66) для каждого параметры приведены в
таблице 2.9.

При моделировании НДС тел полученная полиномиальная зависимость физико–
механических параметров (2.66) не всегда может быть использована в подобном виде. Как
было показано ранее, в работах [137, 139, 159] приведены параметры при минимальной
интенсивности напряжений. Представим полиномиальные зависимости (2.66) для
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Рисунок 2.12 — Графики зависимости физико–механических параметров ЭДТ–10уравнения
Максвелла–Гуревича согласно полиномам (2.66) от уровня температуры T, ◦C и начальной
деформации ε0: а — модуля упругости E; б — модуля высокоэластичности E∞; в — модуля

скорости m∗; г — коэффициента начальной релаксационной вязкости η∗0

постоянного уровня относительной деформации ε = 0.008 = 0.8% как функции только от
температуры T,◦C:

E(ε0.8%, T ) = 0.0218T 3 − 3.5828T 2 + 148.3368T + 1383.8 [МПа] ;
E∞(ε0.8%, T ) = −0.0774T 3 + 19.9614T 2 − 1 695.6T + 47 974 [МПа] ;
m∗(ε0.8%, T ) = −1.0554 · 10−4T 3 + 0.0159T 2 − 0.6948T + 14.0648 [МПа] ;
η∗0(ε0.8%, T ) = −0.0144T 3 + 47.6960T 2 − 6 674.8T + 237 480 [МПа · ч] .

(2.67)

В таблице 2.10 приводятся значения параметров, полученные на основании
выражения (2.67).

2.3 Определение реологических параметров бетона на основе нелинейного
обобщённого уравнения Максвелла-Гуревича

2.3.1 Краткий обзор по истории исследования ползучести бетона

Исследованиями ползучести бетона учёные занимаются уже больше сотни лет. При
этом ползучесть бетона разделяется на два больших класса: линейная и нелинейная.
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Таблица 2.9 — Значения физико–механических параметров ЭДТ–10, для полинома (2.66)

pij E E∞ m∗ η∗0
p00 88.64 8.321 · 104 −11.16 4.464 · 105
p10 2.035 · 105 −5.052 · 106 3219 −3.016 · 107
p01 275.3 −2860 0.7507 −1.297 · 104
p20 −2.43 · 106 8.093 · 107 −8238 5.056 · 108
p11 −1.696 · 104 1.652 · 105 −175.7 9.049 · 105
p02 −5.948 31.21 −0.01699 98.28
p30 −5.049 · 10−5 −1.409 · 10−6 −2.132 · 10−8 1.276 · 10−5

p21 1.362 · 105 −2.457 · 106 −622.9 −1.475 · 107
p12 307.3 −1552 4.004 −7155
p03 0.03424 −0.1042 0.0001395 −0.0756
p40 0.0005179 −8.552 · 10−5 2.492 · 10−7 −0.0005269
p31 8.064 · 10−8 9.518 · 10−8 −2.419 · 10−10 1.709 · 10−7

p22 −1456 1.824 · 104 13.7 1.04 · 105
p13 −1.55 3.346 −0.03063 7.648

R2 0.9984 1.0000 0.9999 1.0000

Таблица 2.10 — Физико-механические параметры ЭДТ–10, определённые согласно
выражениям (2.67) при ε = 0.008 и различных температурах T

T, ◦C E, МПа E∞, МПа m∗, МПа η∗0, МПа · ч
20 3 091.8 21 427 5.6845 122 950
45 2 790.3 5 040.8 5.3790 32 386
60 2 094.7 1 380.6 6.8202 5 587.2
80 1 482.4 450.16 6.2043 1 377.6

Основоположником общей линейной теории ползучести бетона является
Г.Н.Маслов [91]. В его изысканиях были приняты допущения о том, что мгновенные
упругие деформации линейно связаны с возникающими напряжениями. То же касается
компоненты, связанной с ползучестью бетона. Уравнение Г.Н.Маслова имеет вид

ε (t) =
σ(τ1)

E(τ1)
−

tw
τ1

∂

∂τ

[
1

E (τ)
+ C (t, τ)

]
σ (τ) dτ,

где t—момент времени, для которого определяется деформация; τ1 —момент приложения
нагрузки; τ— момент приложения элементарного приращения напряжения; C(t, τ)— мера
ползучести, равная отношению в произвольный момент времени t значения деформации
ползучести, полученной от действия единичного напряжения, приложенного в момент
времени τ.
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Л.Больцмана [180] считают основоположником теории упругой наследственности. Его
уравнения были получены ранее уравнений Г.Н.Маслова.

σ (t) = Eε (0) +

tw
0

K (t− τ) ε (τ) dτ; ε (t) =
σ (0)

E
+

tw
0

R (t− τ)σ (τ) dτ,

где K (t− τ) — ядро интегрального уравнения; R (t− τ) — его резольвента.
Отличием уравнения Л.Больцмана при этом явилось то, что его уравнение способно

корректно описывать обратный процесс, на основании чего и появилось название «упругая
наследственность».

Несколько позднее А.А. Гвоздев [29] предполагал, что при помощи функции
влияния LE(t, τ) проще оказывается получить согласование теоретических изысканий с
соответствующими опытными данными и изложил уравнение Г.Н.Маслова в следующем
виде

ε (t) =
σ (t)

E (t)
−

tw
τ1

σ (t)

E (t)
LE (t, τ) dτ.

Р.С.Санжаровский указывает [119], что в традиционной наследственной теории
ползучести материалов нелинейная составляющая деформации εН не учитывается,
вследствие чего полная деформация складывается из упругой деформации εЛ и
деформации ползучести: ε = εЛ + εП, что не годится для бетона. К таким теориям
ползучести относятся уравнения: Кельвина, Больцмана (1887 г.), Вольтерра (1913 г.),
Маслова–Арутюняна (1952 г.). В этой связи А.А. Гвоздев в 1955 году, на основании
опытов М.С.Боришанского, указал, что традиционная теория ползучести не пригодна
для теории железобетона.

Таким образом в своих исследованиях П.И.Васильев [25, 26] и Н.Х.Арутюнян [13]
независимо друг от друга изложили исследования ползучести бетона в нелинейной
постановке уравнением Маслова–Арутюняна:

ε (t) =
σ(t)

E(t)
−

tw
τ1

∂

∂τ

1

E (τ)
σ (τ) dτ−

tw
τ1

∂C (t, τ)

∂τ
F [σ (τ)] dτ,

где F [σ (τ)] — функция нелинейности, которая может представляться в виде

F [σ (τ)] = [1 + ξσ (τ)]σ (τ) ,

где ξ — опытный параметр.
Другой вариант обобщения уравнения Маслова–Арутюняна, позволяющий учесть как

нелинейную ползучесть, так и мгновенную нелинейность деформирования, был предложен
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Ю.Н.Работновым [110]:

f [ε (t)] =
σ (t)

E (t)
−

tw
τ0

∂

∂τ

[
1

E (τ)

]
σ (τ) dτ−

tw
τ0

∂C(t, τ)

∂τ
σ(τ) dτ, (2.68)

где f (ε) — нелинейная функция деформирования.
Близкой по сути к уравнению (2.68) является вязкоупругопластическая модель

наследственного старения бетона, предложенная А. Г.Тамразяном [130]:

ε(t) =
f [σ(t)]

E(t)
−

tw
τ0

∂C(t, τ)

∂τ
f [σ(τ)] dτ. (2.69)

В.М.Бондаренко [22, 23] и П.И.Васильев [25, 26] дополнительно предложили
выражения для функции нелинейности:

F (σ) = b
(σ
R

)ψ
; F (σ) = a+ b

(σ
R

)ψ
.

2.3.2 Обработка кривых ползучести бетона

Методика определения реологических параметров бетона производится на основе
экспериментальных данных ползучести, полученных А.В.Яшиным и приведённых в
диссертационной работе Ю.А. Гурьевой [36].

Для анализа и обработки экспериментальных данных также используется нелинейное
обобщённое уравнение Максвелла–Гуревича. Необходимо отметить, что данное уравнение
было развито сотрудниками ИХФ АН СССР (в настоящее время — федеральный
исследовательский центр химической физики им. Н.Н.Семенова РАН), с использованием
многочисленных экспериментальных данных МФТИ, развивалось для анализа работы
полимерных материалов и показало весьма хорошие результаты. Несмотря на разную
природу полимерных материалов и бетона, предпринята попытка описания реологии
бетона при помощи тех же уравнений, которые используются для полимеров и композитов.

В общем виде полная деформация тела равна сумме упругой и высокоэластической
составляющих, последняя из которых представляет собой деформации ползучести:

εij = εel,ij + ε
∗
ij (i, k = 1, . . . , 3) , (2.70)

где ε — полная деформация; εel — упругая составляющая; ε∗ — деформация ползучести.
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Согласно уравнению Максвелла–Гуревича, в дифференциальном виде скорость
ползучести (высокоэластических деформаций) имеет вид:

υ∗ij =
dε∗ij
dt =

[
3

2
(σij − pδij)− E∞ε

∗
ij

]
1

η∗
=

f ∗
ij

η∗
(i, k = 1, . . . , 3) , (2.71)

где δij — символ Кронекера, принимает значение 1 при i = k и 0 при i ̸= k; E∞ —
модуль высокоэластичности материала; η∗ — коэффициент релаксационной вязкости; f ∗

ij

— функция напряжений; t — время; p — среднее давление:

p =
1

3

3∑
i=1

σii. (2.72)

Коэффициент релаксационной вязкости так же является функцией напряжений:

1

η∗
=

1

η∗0
exp

(
max

∣∣f ∗
ij

∣∣
m∗

)
(i, k = 1, . . . , 3) , (2.73)

где max
∣∣f ∗

ij

∣∣ — максимальное по абсолютное величине значение функции напряжений; m∗

— модуль скорости материала — в общем виде вносит корректировки в значения вязкости
материала с учётом температуры тела.

В случае испытания образцов на центральное растяжение–сжатие выражение (2.72)
приобретает вид

p =
σ11

3
=
σx

3
,

где x — продольная ось стержня.
При этом выражение (2.71) запишется:

υ∗x =
dε∗ij
dt =

f ∗

η∗
, (2.74)

где f ∗ = σx − E∞ε
∗
x — функция напряжений.

Методика определения физико-механических параметров полимера была
представлена авторами в работах [44, 169, 185, 187, 210]. Однако, указанные труды могут
быть использованы в случаях, если известны экспериментальные кривые ползучести
асимптотически близкие к своим предельным значениям при времени стремящимся к
бесконечности (см. рисунок 2.13).

В случае, если кривая ползучести выходит на горизонтальное плато, то скорость
ползучести (2.74) будет стремиться к нулю υ∗x → 0. Это может происходить или из-за
стремления к нулю функции напряжений, или из-за стремления к бесконечности вязкости
материала. Второй вариант отбрасывается, поскольку изменение свойств вязкости не
может происходить в сторону её увеличения по сравнению со значением при нормальных
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Рисунок 2.13 — Теоретическая кривая ползучести материала

условиях. Тогда, приравнивая нулю функцию напряжений, возможно определение модуля
высокоэластичности

f ∗ = σx − E∞ε
∗
x = 0 → E∞ =

σx

ε∗x
. (2.75)

В случае исследования бетона время выхода на горизонтальное плато может
составлять многие годы, поэтому рассматривался иной подход. Каждая экспериментальная
точка индексируется (рисунок 2.14), шаг времени между получившимися точками в
большинстве случаев является переменным.

Рисунок 2.14 — К обработке экспериментальных кривых

Для определения скорости деформаций в программном комплексе Octave (MatLab)
использовалась встроенная функция polyfit, которая вычисляет коэффициенты полинома
вида

y = ax2 + bx+ c.

Функции polyfit последовательно передавались значения ползучести в трёх соседних
точках, определялись соответствующие коэффициенты, описывающие аппроксимирующую
кривую ползучести и находилась скорость ползучести по формуле:

υ∗x = y′ = 2ax+ b.

В крайних точках скорости деформаций определялись таким же образом.
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Имея распределение скорости ползучести в каждой точке υ∗x,i, выражение (2.75) можно
преобразовать к виду

σx,i

υ∗x,i
=

E∞

ε∗x
υ∗x,i + η

∗,

что соответствует полиному первой степени

y = ax+ b, (2.76)

где y = σx,i/υ
∗
x,i; a = E∞; x = ε∗x/υ

∗
x,i; b = η∗.

Аппроксимация экспериментальных точек при помощи выражения (2.76) так
же выполнялась встроенной функцией polyfit. Поскольку значение коэффициента
релаксационной вязкости η∗ является функцией от напряжения (2.73), то найденное
значение параметра b в полиноме (2.76) соответствует вязкости в момент времени,
соответствующий времени релаксации материала.

Последующая процедура повторяет алгоритм из работ [44, 169, 185, 187, 210]. Получив
значения модуля высокоэластичности E∞ на следующем этапе над выражением (2.73)
выполняют ряд модификаций. Для этого выражение (2.73), удобно записать в ином виде
для центрального растяжения–сжатия

η∗ = η∗0 exp
(
−|f ∗|

m∗

)
,

после чего его логарифмируют, получая равенство

lnη∗ = −|f ∗|
m∗ + lnη∗0,

которое так же может быть аппроксимировано полиномом первой степени

y = ax+ b, (2.77)

где y = lnη∗; a = −1/m∗; x = |f ∗|; b = lnη∗0.
После определения коэффициентов полинома (2.77) для каждого экспериментально

узла, появляется возможность определить искомые параметры

m∗ = −1

a
; η∗0 = exp (b) .

Полученные значения реологических параметров E∞, m∗ и η∗0, на основе
подбора аппроксимирующих коэффициентов линейных полиномов, имеют грубый
приблизительный характер и требуются дополнительные меры по их уточнению.

Используется следующий подход: для каждой экспериментальной точки строится
теоретическая кривая на основе полученных данных, находится невязка относительная
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и абсолютная, происходит суммирование всех невязок, и процедура повторяется для
следующей группы реологических параметров бетона. «Истинными» считаются те
значения, в которых невязка является наименьшей. Выражения для определения
относительной и абсолютной невязок имеют вид

δОТН,i =

(
εТЕОР,i − εЭКСП,i

εЭКСП,i

)2

; δАБС,i = (εТЕОР,i − εЭКСП,i)2 , (2.78)

где εТЕОР,i — полученное теоретическое значение деформации на основе анализа кривых
ползучести, сопоставляемое с экспериментальным значением εЭКСП,i.

В выражении (2.78) использование относительной невязки показывает лучшее
совпадение теоретической кривой с экспериментальной на ранних этапах времени
(рисунок 2.15, штрихпунктирная линия), а абсолютная невязка — на основной части
кривой (рисунок 2.15, пунктирная кривая).

Для построения теоретической кривой использован метод Рунге–Кутты.
В качестве искомой функции принято распределение деформаций ползучести ε∗ij,

скорость которой определяется согласно выражению (2.74).
Пусть Yi = ε∗x — численная аппроксимация деформации ползучести, значения

функции в i-й точке (рисунок 2.14). Тогда согласно методу Рунге—Кутты значения
функции на последующем этапе времени будет определяться

Yi+1 = Yi +
ht

6
(k0 + 2k1 + 2k2 + k3) .

В общем виде коэффициенты k0, k1, k2 и k3 являются функциями двух переменных:
самой деформации ползучести Yi и времени ti и представляют собой фактически функции
скорости ползучести.

Пусть величина ht равна шагу времени между рассматриваемыми узлами по времени,
тогда

ht = ti+1 − ti.

Тогда значения коэффициентов в уравнении (2.79) могут быть записаны:

k0 = f (ti, Yi) =
f ∗(ti, Yi)

η∗(ti, Yi)
=

f ∗ (ti, Yi)

η∗0
exp

(
|f ∗ (ti, Yi)|

m∗

)
;
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k1 = f

(
ti +

ht

2
, Yi +

htk0
2

)
=

f ∗
(
ti +

ht

2
, Yi +

htk0
2

)
η∗
(
ti +

ht

2
, Yi +

htk0
2

) =

=

f ∗
(
ti +

ht

2
, Yi +

htk0
2

)
η∗0

exp

f ∗
(
ti +

ht

2
, Yi +

htk0
2

)
m∗

;

k2 = f

(
ti +

ht

2
, Yi +

htk1
2

)
=

f ∗
(
ti +

ht

2
, Yi +

htk1
2

)
η∗
(
ti +

ht

2
, Yi +

htk1
2

) =

=

f ∗
(
ti +

ht

2
, Yi +

htk1
2

)
η∗0

exp


∣∣∣∣f ∗
(
ti +

ht

2
, Yi +

htk1
2

)∣∣∣∣
m∗

;

k3 = f (ti + ht, Yi + htk2) =
f ∗ (ti + ht, Yi + htk2)

η∗ (ti + ht, Yi + htk2)
=

=
σx,i (ti + ht, Yi + htk2)− E∞Yi

η∗0
exp

(
|σx,i (ti + ht, Yi + htk2)− E∞Yi|

m∗

)
. (2.79)

В выражении (2.79) функции напряжений записываются

f ∗ (ti, Yi) = σx,i (ti, Yi)− E∞Yi;

f ∗
(
ti +

ht

2
, Yi +

htk0
2

)
= σx,i

(
ti +

ht

2
, Yi +

htk0
2

)
− E∞

(
Yi +

htk0
2

)
;

f ∗
(
ti +

ht

2
, Yi +

htk1
2

)
= σx,i

(
ti +

ht

2
, Yi +

htk1
2

)
− E∞

(
Yi +

htk1
2

)
;

f ∗ (ti + ht, Yi + htk2) = σx,i (ti + ht, Yi + htk2)− E∞(Yi + htk2).

(2.80)

Значение напряжения в момент времени ti необходимо представить как функцию от
деформаций, равную произведению модуля упругости на упругую компоненту деформации,
т. е.

σx,i = Eεel,i = E
(
εx,i − ε∗x,i

)
.

С учётом принятой замены Yi = ε
∗
x, получаем

σx,i = E (εx,i − Yi) .
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Аналогично функции напряжений выражения (2.80) записываются

f ∗ (ti, Yi) = E (εx,i − Yi)− E∞Yi;

f ∗
(
ti +

ht

2
, Yi +

htk0
2

)
= E

[
εx,i −

(
Yi +

htk0
2

)]
− E∞

(
Yi +

htk0
2

)
;

f ∗
(
ti +

ht

2
, Yi +

htk1
2

)
= E

[
εx,i −

(
Yi +

htk1
2

)]
− E∞

(
Yi +

htk1
2

)
;

f ∗ (ti + ht, Yi + htk2) = E [εx,i − (Yi + htk2)]− E∞ (Yi + htk2) .

(2.81)

2.3.3 Результаты и обсуждение

Проведён анализ представленных на рисунке 2.15 экспериментальных результатов
при следующих исходных данных: E = 4 · 104МПа; Rc = 30МПа. Полученные результаты
определения реологических параметров, соответствующих исходным опытным данным,
представлены в таблице 2.11. Использованы следующие сокращения: m∗

rel, η∗0,rel —
соответственно модуль скорости и коэффициент начальной релаксационной вязкости,
полученные на основании относительной невязки (от англ. relative — относительный);
m∗

abs, η∗0,abs — соответственно модуль скорости и коэффициент начальной релаксационной
вязкости, полученные на основании асболютной невязки (от англ. absolute — абсолютный).
Для построения теоретических результатов использовалось не менее 1000 интервалов по
времени (см. рисунок 2.15).

Рисунок 2.15 — Экспериментальные данные ползучести бетона, полученные А.В.Яшиным
(маркеры); теоретические кривые ползучести бетона, полученные на основании реологических

параметров, представленных в таблице 2.11
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Таблица 2.11 — Результаты определения реологических параметров

σ/RC E∞, МПа m∗
rel, МПа m∗

abs, МПа η∗0,rel, МПа · сут η∗0,abs, МПа · сут
0.4 41 385 872 710 97.958 5.5732 · 106 5.8192 · 106
0.5 26 481 42 701 23.695 2.8175 · 106 4.2502 · 106
0.6 15 175 26 545 32.243 2.7210 · 106 2.7210 · 106
0.7 11 072 1 289.4 49.449 1.2986 · 106 1.7013 · 106
0.8 10 412 747.89 30.867 1.2494 · 106 2.1372 · 106

После определения реологических параметров, были построены теоретические кривые
и наложены на результат экспериментов (см. рисунок 2.15). Штрихпунктирной линией
показана теоретическая кривая, полученная на основании относительной невязки (2.78),
пунктирная — на основании абсолютной невязки. Кривая на основе относительной невязки
показывает лучшее совпадение с экспериментальными данными в начале исследуемого
периода времени, а кривая на основе абсолютной невязки — на основной её части. При
этом в обоих случаях отличие экспериментальных данных от теоретических результатов
минимально и позывает весьма хорошее совпадение.

Из таблицы 2.11 видно резкое снижение реологических параметров при отношении
σ/Rc > 0.5, что может объясняться значительным выраженным нелинейным поведением
бетона при ползучести, что указано в работе Р.С.Санжаровского [119].

Следующим этапом проводится аппроксимация полученных результатов полиномом
второй степени

y = ax2 + bx+ c. (2.82)

При этом коэффициент детерминации R2 определяется:

R2 = 1−
∑n

i=1(yexp,i − ytheory,i)
2∑n

i=1(yexp,i − yexp)
2

,

где n — количество экспериментальных точек для графике ползучести; yexp,i — значение
функции из таблицы 2.11; ytheory,i — значение функции, определённой по выражению для
полинома (2.82); yexp = (

∑n
i=1 yexp,i) /n — среднее значение функции из таблицы 2.11.

Получены следующие функциональные зависимости реологических параметров от
уровня напряжения (k = σ/Rc) для диапазона 0.4 ⩽ k ⩽ 0.8:

E∞ (k) = 2.5494 · 105k2 − 3.8328 · 105k + 1.5400 · 105 (R2 = 0.9999);

m∗
rel (k) = 1.2465 · 107k2 − 1.6701 · 107k + 5.4591 · 106 (R2 = 0.8149);

m∗
abs (k) = 857.29k2 − 1137.17k + 403.38 (R2 = 0.4876);

η∗0,rel (k) = 2.9194 · 107k2 − 4.5199 · 107k + 1.8758e+ 07 (R2 = 0.9995);

η∗0,abs (k) = 3.2281 · 107k2 − 4.8650 · 107k + 2.0249 · 107 (R2 = 0.9844).

(2.83)
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На рисунке 2.16 представлены графики изменения реологических параметров,
полученные согласно выражению (2.83).

а б

в г

д

Рисунок 2.16 — Графики изменения реологических параметров бетона согласно выражению (2.83)

Анализ представленных графиков показывает очень хорошее совпадение
теоретических значений, определённых при помощи полинома (2.83) со значениями,
представленными в таблице 2.11 для модуля высокоэластичности E∞ (k) и коэффициента
начальной релаксационной вязкости η∗0 (k). Модуль скорости m∗ (k) имеет гораздо
худшее совпадение, однако, он фактически является поправочных коэффициентом,
зависящим от температуры. Аналогичные «колебания» модуля скорости наблюдаются
как в работах [44, 169, 185, 187, 210], так и в параграфе 2.2.5 настоящей диссертации.

Были построены теоретические кривые ползучести бетона и нанесены
экспериментальные данные (рисунок 2.83, а). Для построения использованы реологические

82



параметры, определённые согласно выражениям (2.83). Для сопоставления с данными из
таблицы 2.11 получены значения в соответствующих узлах и приведены в таблице 2.12.

Таблица 2.12 — Результаты определения реологических параметров согласно выражениям (2.83)

σ/RC E∞, m∗
rel, m∗

abs, η∗0,rel, η∗0,abs,
МПа МПа МПа МПа · сут МПа · сут

0.4 41 478 773 100 85.678 5 349 440 5 953 960
0.5 26 095 224 850 49.117 3 457 000 3 994 250
0.6 1.5810 · 104 -74 100 29.702 2 148 440 2 680 160
0.7 1.0625 · 104 −1.2375 · 105 27.433 1 423 760 2 011 690
0.8 1.0538 · 104 7.5900 · 104 42.310 1.2830 · 106 1.9888 · 106

Необходимо обратить внимание на появление отрицательного значения модуля
скорости m∗

rel, МПа в таблице 2.11 и на рисунке 2.16. Данный факт объясняется тем, что
поиск реологических параметров по относительной невязке может давать завышенные
значения искомых параметров в начальных точках кривых. Таким образом, лучше
воздержаться от поиска параметров по относительной невязке и пользоваться поиском
по абсолютной невязке, наиболее полноценно соответствуя всей кривой ползучести. В
случае, если всё равно необходимо воспользоваться поиском по относительной невязке,
то возможно ограничение использования модуля скорости с отрицательными значениями
— в этих точках значения модуля скорости принимается равным 0, соответственно,
коэффициент релаксационной вязкости здесь будет равен коэффициенту начальной
релаксационной вязкости, т. е.

η∗ = η∗0 exp
(
−|f ∗|

m∗

)
= η∗0 exp

(
−|f ∗|

0

)
≈ η∗0.

Для исключения подобных явлений необходимо использование более точных
графиков кривых ползучести бетона с большим количеством экспериментальных
значений на каждую кривую.

В инженерной практике для удобства использования полученных результатов иногда
происходит их усреднение. На рисунке 2.17, б построены теоретические кривые для
следующих усреднённых значений реологических параметров: E∞,СРЕДН = 2.0909 · 104МПа;
m∗

rel,СРЕДН = 175 200МПа; m∗
abs,СРЕДН = 46.848МПа; η∗0,rel,СРЕДН = 2.7323 · 106МПа · сут;

η∗0,abs,СРЕДН = 3.3258 · 106МПа · сут. Как видно из представленных графиков, использование
усреднения физико–механических параметров даёт слишком грубые результаты и сильное
отклонение теоретических кривых от экспериментальных данных.

В будущем подобные исследования необходимо проводить для максимального полного
диапазона соотношения σ / Rc, от 0 до 0.9, поскольку значения реологических параметров
при соотношении напряжения к расчётному сопротивлению на сжатие ниже 0.5 имеют
значительно большие значение.
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б

Рисунок 2.17 — Теоретическое кривые ползучести бетона: а — полученные на основе
реологических параметров из выражения (2.83); б — полученные по усреднённым значения

реологических параметров выражения (2.83)

Получены коэффициенты детерминации R2 согласования экспериментальных данных
с теоретическими кривыми, построенными по данным таблицы 2.11 и представленными
на рисунке 2.15, а также построенными при помощи реологических параметров согласно
выражению (2.83) и представленных на рисунке 2.17, а (см. таблицу 2.13). Результаты
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показывают, что теоретические кривые, построенные на основании физико-механических
параметров, определённых по относительной невязке, имеют лучшее соответствие
экспериментальным данным, чем теоретические кривые, построенные на основании
реологических параметров, определённых по абсолютной невязке.

Таблица 2.13 — Достоверность аппроксимации экспериментальных данных и теоретических
кривых при различных уровнях напряжений

σ/RC 0.4 0.5 0.6 0.7 0.8
По рисунку 2.15 и данным таблицы 2.11

relative 0.9221 0.9912 0.9446 0.9837 0.9825
absolute 0.9217 0.9587 0.9343 0.9608 0.9227
По рисунку 2.17 и данным выражения (2.83)
relative 0.9318 0.9737 0.8845 0.9947 0.9688
absolute 0.9128 0.9647 0.8716 0.9841 0.9079

2.4 Внедрение методики определения физико–механических параметров в
практику изготовления элементов конструкций

Данные исследования проводились на базе ГК АКСстрой под руководством доц.
В.Ф.Акопяна в рамках его докторской работы (акт внедрения приведён в приложении
к настоящей работе). В связи с этим в настоящем разделе приводятся только фотографии
и данные, имеющих непосредственное отношение к настоящей диссертационной работе по
изучению физико–механических параметров материалов строительных конструкций и их
элементов.

Цель исследования: подбор оптимальных температур для формирования элементов
строительных конструкций.

Для облегчения введения закручиваемых свай в грунт, В.Ф.Акопян предполагал
сделать или сваи из полимерных материалов, или сделать оголовки на бетонные сваи.

На первом этапе были созданы сваи (рисунок 2.18) из эпоксидной смолы (ЭД–20).
Данная свая при закручивании в грунт показала прочность значительно меньше, чем
аналогичная свая, сделанная из бетона с армированием. С учётом большей стоимость
эпоксидной смолы по сравнению со стоимостью аналогичной сваи из армированного бетона
было принято решение отказаться от использования первой в дальнейшем.

Следующим этапом создавались оголовки из полиэтилена низкого давления (ПЭНД)
и полиэтилентерефталата (ПЭТ).

При изготовлении свай из ПЭНД использовались гранулы заводского производства,
которые пропускались через экструдер с последующим выдуванием полимерной массы
в формы (рисунок 2.19, а). При низкой температуре полимерной массы требовалось
значительное давление для выдувания её в форму. Слишком большая форма приводила
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а

б

Рисунок 2.18 — Сваи из эпоксидной смолы: а — рабочая часть сваи; б — разрушение рабочей
части сваи
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к тому, что полимерная масса приобретала излишнюю «жидкость» и происходило
локальное «вздутие» полимерной массы, что приводило к отбраковыванию образца
(рисунок 2.19, б). Исследования физико–механических свойств использованного ПЭНД
показало, что оптимальной температурой формирования образцов из полимерной массы
будет температура порядка 110℃ при температуре плавления в 120–135℃.

Следующим этапом проводилось изучение физико–механических параметров
заготовок из ПЭТ. При этом пресс–форма (рисунок 2.20, а) изготавливалась отдельно
из использованных бутылок ПЭТ. При вторичном использовании пластика его свойства
сильно ухудшаются. ГК АКСстрой были предоставлены кривые релаксации ПЭТ,
используемого для заготовок под выдувку свай. Путём анализа кривых релаксации было
установлено, что оптимальная температура для заготовки и её «выдувания» составляет
порядка 67℃, что лишь немного меньше температуры стеклования ПЭТ, составляющей
порядка 70℃
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б

Рисунок 2.19 — Заготовки из полиэтилена низкого давления: а — формование при низкой
температуре; б — дефекты при высокой температуре
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б

Рисунок 2.20 — Заготовки из полиэтилентерефталата: а — заготовка; б — готовый оголовок сваи
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2.5 Выводы по главе

1. Рассмотрено используемое во всей диссертационной работе уравнение состояние
Максвелла–Гуревича с входящими в него своими физико–механическими параметрами.

2. Приведены константы уравнения Максвелла–Гуревича. Показано, что данные
константы на самом деле являются значительной функцией от температуры.

3. Разработана и изложена альтернативная методика определения параметров,
входящих в уравнение состояния, на основе обработки кривых релаксации напряжений.
При наличии ряда экспериментальных данных, полученных при различных
температурных режимах, возможно построить функциональную зависимость параметров
от температуры.

4. Для эпоксидного связующего ЭДТ–10 физико–механические параметры
определены как функция от двух независимых факторов: уровня начальной полной
относительной деформации и значения температуры.

5. При помощи разработанной методики обработки кривых ползучести бетона на
основе уравнения Максвелла–Гуревича получены и приведены результаты определения
физико–механических параметров бетона как функции от отношения напряжения к
расчётному сопротивлению на сжатие.
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Глава 3. Одномерные задачи неоднородных тел в условиях
термовязкоупругости

В настоящей главе рассматривается моделирование НДС в полимерных цилиндрах
при различных режимах механического и температурного нагружений в одномерной
постановке. Расчётная схема задачи представлена на рисунке 3.1, аппроксимируются
двумя формами: плоским деформированным состоянием (ПДС), при котором линейный
размер l много больше внешнего радиуса цилиндра Rb (l ≫ Rb), и плоским напряжённым
состоянием при котором линейный размер l стремится к малой величина (l → 0).

Рисунок 3.1 — Рассчётная схема задачи по определению НДС в цилиндре: а — исходный цилиндр;
б — схематизация аппроксимации задачи к одномерной постановке; в — некоторая функция
y = f(x); г — аппроксимация этой функции конечными разностями; д — аппроксимация этой

функции конечными элементами

Граничные условия формулируются следующими переменными: Ta и Tb — значение
температуры непосредственно на внутренней и внешней поверхностях тела; Pa и Pb —
интенсивность внешнего давления, приложенного по нормали к внутренней и внешней
поверхностям тела.

3.1 Определение постоянного во времени температурного поля

При рассмотрении задачи в квазистатической постановке приведённое ранее
уравнение (1.16) (с. 22) для определения температурного поля принимает вид:
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d2T
dr2 +

1

r

dT
dr = 0. (3.1)

Представленное однородное дифференциальное уравнение первого порядка (3.1)
имеет хорошо известное решение, для получения которого вводится замена переменной.
Представим дифференциал температурного поля по радиусу как ϑ:

dT
dr = ϑ (3.2)

После подстановки (3.2) в (3.1) последнее сводится к виду

dϑ
ϑ

= −dr
r
,

удобному для интегрирования обоих частей:

w 1

ϑ
dϑ = −

w 1

r
dr → ln ϑ = − ln r + lnC1; → ln ϑ = ln C1

r
→ ϑ =

C1

r
.

Возвращаясь к произведённой ранее замене (3.2) с учётом полученного выражения
для ϑ, получаем:

dT
dr =

C1

r
→ dT = C1

dr
r

→ T = C1 ln r + C2.

Определить значения полученных переменных интегрирования C1 и C2 возможно
путём составления системы уравнений при соответствующих граничных условиях:{

r = Ra → T = Ta

r = Rb → T = Tb

→

[
lnRa 1

lnRb 1

]{
C1

C2

}
=

{
Ta

Tb

}
.

Следовательно, окончательно распределение вдоль радиуса цилиндра температуры в
случае постоянного во времени однородного поля определяется выражением:

T (r) =

Ta ln
(
Rb

r

)
+ Tb ln

(
r

Ra

)
ln
(
Rb

Ra

) . (3.3)

3.1.1 Решение с помощью метода конечных разностей

Исходным уравнением, подлежащим дальнейшем аппроксимации при помощи МКР,
является (3.1). К нему применяются выражения, рассмотренные ранее в разделе 1.3.3. Для
дальнейшего решения по радиусу цилиндра [Ra, Rb] вводится равномерная сетка:
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ωr =

{
ri = a+ (i− 1)hr; hr =

Rb −Ra

N
; i = 1, 2, . . . , N + 1

}
. (3.4)

С учётом аппроксимирующих выражений (1.31) и (1.32) для температурного поля
справедлива запись

dT
dr → Ti+1 − Ti−1

2hr

;
d2T
dr2 →=

Ti+1 − 2Ti + Ti−1

h2
r

;

d2T
dr2 +

1

r

dT
dr = 0 → Ti+1

h2
r

− 2Ti

h2
r

+
Ti−1

h2
r

+
Ti+1

2rhr

− Ti−1

2rhr

= 0.

После чего составляется система сеточных уравнение, с последующим составлением
трёхдиагональной матрицы, подлежащей определению:

aiTi−1 + biTi + ciTi+1 = fi (i = 2, 3, . . . , N);

T1 = Ta; TN+1 = Tb;

ai =
1

h2
r

− 1

2rhr

; bi = − 2

h2
r

; ci =
1

h2
r

+
1

2rhr

;



1 0 0 0 0 0 0 0 0

a2 b2 c2 0 0 0 0 0 0

. . . . . . . . .

0 0 ai−1 bi−1 ci−1 0 0 0 0

0 0 0 ai bi ci 0 0 0

0 0 0 0 ai+1 bi+1 ci+1 0 0

. . . . . . . . .

0 0 0 0 0 0 aN bN cN

0 0 0 0 0 0 0 0 1


︸ ︷︷ ︸

K



T1

T2

. . .

Ti−1

Ti

Ti+1

. . .

TN

TN+1

︸ ︷︷ ︸
T

=



Ta

0

. . .

0

0

0

. . .

0

Tb

︸ ︷︷ ︸
F

; (3.5)

K ·T = F →

T = K−1 · F.

3.1.2 Решение с помощью метода конечных элементов

Уравнение теплопроводности (1.16) в линейной постановке записывается:

−div (κ · gradT ) = 0. (3.6)
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С учётом аппроксимирующих выражений (1.24) для МКЭ для температурного поля
справедлива запись

T =
Rj − r

Rj −Ri︸ ︷︷ ︸
Ni

Ti +
r −Ri

Rj −Ri︸ ︷︷ ︸
Nj

Tj = NiTi +NjTj =
{
Ni Nj

}
︸ ︷︷ ︸

N

{
Ti

Tj

}
︸ ︷︷ ︸
T

= NT. (3.7)

В разделе 1.2.2 показан механизм перехода от эллиптического уравнения
теплопроводности (3.6) к соответствующему функционалу:

Im (T ) =
w
V

[
κ (gradT )2

]
dV =

w
V

[
κ
(dT
dr

)2
]
dV. (3.8)

Поскольку задача рассматривается в осесимметричной постановке, до относительно
окружной координаты θ все параметры являются величиной постоянной, т. е.

d
dθ = 0,

следовательно бесконечно малые объёмы (см. рисунок 3.2) могут рассматриваться при
произвольном угле θ, принимаемым, для удобства равным единице:

θ = 1.

Рисунок 3.2 — Конечный элемент для аппроксимации цилиндра в осесимметричной постановке

Тогда объём конечного элемента (см. рисунок 3.2) может быть определён

dV ≈ Aоснов · hz = θ · r · hz · dr = θ · r · hz · dr ≈ r dr, (3.9)

поскольку в одномерных плоских задачах принимается hz = 1.
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В настоящей диссертационной работе учёт изменения физико–механических
параметров, связанных с температурой, от самой температуры не учитывается, поскольку
это большая самостоятельная тема для исследований, следовательно, справедливо
допущение, что в функционале (3.8) κ = const. Тогда с учётом выражения для
элементарного объёма (3.9), функционал (3.8) записывается:

Im (T ) = κ
Rjw
Ri

r

(dT
dr

)2

dr.

Следом производится минимизация полученного выражения функционала по
температуре T , в результате чего получается система:

dIm
dT =


d Im
dTi

= 0

d Im
dTj

= 0

или, приводя к матричному виду

Rj +Ri

Rj −Ri

[
1 −1

−1 1

]{
Ti

Tj

}
=

{
0

0

}
.

Полученная система представляется через матрицу коэффициентов[
k
(e)
11 k

(e)
12

k
(e)
21 k

(e)
22

]
︸ ︷︷ ︸

k(e)

{
T

(e)
i

T
(e)
j

}
︸ ︷︷ ︸
T (e)

=

{
f
(e)
1

f
(e)
2

}
︸ ︷︷ ︸
f (e)

→ k(e)T(e) = f (e),

где k(e) — матрица теплопроводности (жёсткости) конечного элемента; f (e) — вектор
нагрузок.

Следовательно для практического применения глобальные матрицы принимают вид

KT = F,

где K =
∑E

e=1 k(e); F =
∑E

e=1 f (e).

95



В результате матрица теплопроводности принимает аналогичный трёхдиагональный
вид, как и при помощи МКР (3.5) с учётом T

(e−1)
j = T

(e)
i и T

(e)
j = T

(e+1)
i :

1

. . . . . . . . .

k
(e−1)
21 k

(e−1)
22 + k

(e)
11 k

(e)
12

k
(e)
21 k

(e)
22 + k

(e+1)
11 k

(e+1)
12

. . . . . . . . .

1





T1

. . .

T
(e)
i

T
(e)
j

. . .

TN+1


=



Ta

. . .

f
(e−1)
2 + f

(e)
1

f
(e)
2 + f

(e+1)
1

. . .

Tb


.

3.1.3 Сравнение результатов, полученных различными методами

В разделе рассматривается модельная задача, решение производится при помощи
аналитического метода, МКР и МКЭ с последующих сопоставлением полученных
результатов для оценки их достоверности. Расчётная смеха приведена на рисунке 3.1.
Постановка задачи: Ra = 0.008м; Rb = 0.028м; Ta = 100℃; Tb = 28℃.

По радиусу в случае решения при помощи МКР и введения равномерной сетки
использованы два интервала, в случае решения при помощи МКЭ эти же интервалы
аппрокимированы двумя конечными элементами одной длины, т. е. N = 2. При этом
образуются три узла, в которых происходило определение искомых значений функции
как численными методами, так и аналитически. Полученный график распределения
температуры по радиусу представлен на рисунке 3.3, значения по узлам приведены в
таблице 3.1 для различных иных значений числа аппроксимаций N .

Значения температуры в узлах, определённые при помощи МКР и МКЭ, полностью
совпали между собой, что будет учтено при изменяющемся во времени температурном
поле со своими особенностями. Наибольшее отклонение численного решения от точного
аналитического наблюдалось при N = 2 и в пределах выводимой точности полностью
совпало для всех трёх методов при N > 100.

Таблица 3.1 — Значения температуры в случае постоянного во времени температурного поля при
различном количестве аппроксимирующих интервалов N в точке r = 0.018м при использовании:
аналитического решения (АР), МКР и МКЭ
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Рисунок 3.3 — Распределение постоянного во времени температурного поля по радиусу цилиндра
(N = 2) в случае решений: ⃝ — аналитического; △ — численного

3.2 Определение переменного во времени температурного поля

При определении переменного во времени температурного поля уравнение (1.16)
принимает вид:

∂2T

∂r2
+

1

r

∂T

∂r
=

1

κ
∂T

∂t
. (3.10)

Поскольку в общем случае физико–механические параметры полимера, связанные с
его теплотехническими параметрами, могут быть функциями самой температуры, то поиск
аналитического решения дифференциального неоднородного уравнения (3.10) становится
нецелесообразным, граничные условия могут принимать произвольную форму.

На рассматриваемый в решении задач полный период времени накладывается
равномерная сетка

ωt =

{
tϱ = (ϱ− 1)ht; ht =

tmax

Nt

; ϱ = 1, 2, . . . , Nt + 1

}
,

где tmax — значение времени в крайней точке всей продолжительности исследования; Nt

— полное количество участков вводимой равномерной сетки для аппроксимации общей
продолжительности исследования.

Значение температуры в каждой точке теперь является функцией от двух координат:
радиуса r и времени t (T (r, t)), следовательно в каждой конкретной точке r значение
скорости изменения температуры во времени может быть представлено при помощи левых
разностей (1.29):

∂T (r, t)

∂t
≈ Tϱ − Tϱ−1

ht

.
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Решение производится по следующему алгоритму. В момент времени (t = 0),
соответствующему узлу сетки времени с индексом ϱ = 1, производится решение задачи,
правая часть уравнения (3.10) в этом случае 1

κ
∂T

∂t
= 0. Имея решение задачи на текущем

моменте, переход осуществляется на следующий момент времени ϱ + 1, вплоть до
достижения конца аппроксимирующей время сетки. После перехода на следующий узел
времени значение температуры Tϱ теперь является также величиной неизвестной, а на
предыдущем этапе Tϱ−1 она определена.

3.2.1 Решение с помощью метода конечных разностей

Использование МКР для решения подобных задач сопровождается введением
некоторой сетки в радиальном направлении по толще тела [Ra, Rb] с последующим
изучением НДС в узлах:

ωr =

{
ri = a+ (i− 1)hr; hr =

Rb −Ra

N r
; = 1, 2, . . . , Nr + 1

}
.

Одновременно рассматривается аппроксимация исходного уравнения (3.10) как на
сетке во времени, так и по радиусу, определяемые индексами ϱ и i, соответственно, при
помощи приведённых ранее уравнений (1.31) и (1.32):

∂2T

∂r2
→ Tϱ, i+1 − 2Tϱ, i + Tϱ, i−1

h2
r

;

1

r

∂T

∂r
→ 1

r
· Tϱ, i+1 − Tϱ, i−1

2hr

;

1

κ
∂T

∂t
→ 1

κ
· Tϱ, i − Tϱ−1, i

ht

.

Окончательно, выражение (3.10) примет вид:

1

h2
r

(Tϱ, i+1 − 2Tϱ, i + Tϱ, i−1) +
1

2rhr

(Tϱ, i+1 − Tϱ, i−1) =
1

κht

(Tϱ, i − Tϱ−1, i) .

Следующим этапом представленная разностная схема используется для получения
систем уравнений в каждый момент времени по радиусу.

aiTϱ, i−1 + biTϱ, i + ciTϱ, i+1 = fϱ, i (i = 2, 3, . . . , Nr; ϱ = 1, 2, . . . , Nt + 1), (3.11)

где граничный условия имеют вид

Tϱ, 1 = Tϱ, a; Tϱ,N+1 = Tϱ, b.
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Коэффициенты системы (3.11) принимают вид:

ai =
1

hr

(
1

hr

− 1

2r

)
;

bi = −
(

2

h2
r

+
1

κ · ht

)
;

ci =
1

hr

(
1

hr

+
1

2r

)
;

fϱ, i = −Tϱ−1,i

κ · ht

.

Результатом данных манипуляций является получение трёхдиагональной матрицы:

1

a2 b2 c2

. . . . . . . . .

ai−1 bi−1 ci−1

ai bi ci

ai+1 bi+1 ci+1

. . . . . . . . .

aNr bNr cNr

1





Tϱ, 1

Tϱ, 2

. . .

Tϱ, i−1

Tϱ, i

Tϱ, i+1

. . .

Tϱ,Nr

Tϱ,Nr+1



=



Ta

fϱ, 2

. . .

fϱ, i−1

fϱ, i

fϱ, i+1

. . .

fϱ,Nr

Tb



.

3.2.2 Решение с помощью метода конечных элементов

Для решения задачи определения физических полей, в том числе температурных,
составляют для дифференциального уравнения (3.10) выражение функционала. В отличие
от (3.6) исходное дифференциальное уравнение теперь является функцией времени и
становится неоднородным. Для использования приведённого в разделе 1.2.2 механизма
перехода от эллиптического уравнения к функционалу выделяют 2 подхода:

1. Скорость изменения температуры ∂T/∂t аппроксимируется

∂T (r, t)

∂t
≈ Tϱ − Tϱ−1

ht

перед переходом от эллиптического уравнения к функционалу. В этом случае Tϱ−1 является
известным параметром, определённым на предыдущем моменте времени, Tϱ — подлежит
определению.

2. Скорость изменения температуры ∂T/∂t представляет собой функцию f ,
аппроксимация которой происходит после перехода от эллиптического уравнения к
функционалу.
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3.2.2.1 Аппроксимация скорости изменения температуры перед составлением
выражения функционала

После введения замены ∂T (r, t)

∂t
≈ Tϱ − Tϱ−1

ht

и последующей перегруппировки
выражение (3.10) принимает вид

κ
(
∂2T

∂r2
+

1

r

∂T

∂r

)
− 1

ht

Tϱ = − 1

ht

Tϱ−1,

дивергентная форма которого записывается

−div [κ gradT ] + 1

ht

Tϱ = f, где f =
1

ht

Tϱ−1. (3.12)

Значения температуры Tϱ и Tϱ−1 аппроксимируются по радиусу аналогично
выражению (3.7):

Tϱ =
[
Ni Nj

]{Tϱ, i

Tϱ, j

}
= NTϱ;

Tϱ−1 =
[
Ni Nj

]{Tϱ−1, i

Tϱ−1, j

}
= NTϱ−1.

На основании выкладок в разделе 1.2.2, а также с учётом приблизительного объёма
КЭ (3.9) функционал эллиптического уравнения (3.12) запишется:

Im (Tϱ) =

Rjw
Ri

r

[
κ
(
∂Tϱ

∂r

)2

+
T 2
ϱ

ht

− 2
Tϱ−1Tϱ

ht

]
dr.

Последующая минимизация полученного функционала по температуре

∂ Im (Tϱ)

∂Tϱ

= 0

приводит к получению системы линейных уравнений:[
k
(e)
11 k

(e)
12

k
(e)
21 k

(e)
22

]
︸ ︷︷ ︸

k(e)

{
T

(e)
ϱ, i

T
(e)
ϱ, j

}
︸ ︷︷ ︸
T(e)

=

{
f
(e)
1

f
(e)
2

}
︸ ︷︷ ︸

f(e)

→ k(e)T(e) = f (e), (3.13)
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где коэффициенты равны
k
(e)
11

k
(e)
12 = k

(e)
21

k
(e)
22

 =

R
2
j + 2RiRj − 3R2

i 1

R2
j −R2

i −1

3R2
j − 2RiRj −R2

i 1

{ 1/(6ht)

κ(Rj +Ri)/(Rj −Ri)

}
;

{
f
(e)
1

f
(e)
2

}
=

1

6ht

[
R2

j + 2RiRj − 3R2
i R2

j −R2
i

R2
j −R2

i 3R2
j − 2RiRj −R2

i

]{
Tϱ−1, i

Tϱ−1, j

}
.

3.2.2.2 Аппроксимация скорости изменения температуры после составлением
выражения функционала

Перед переходом от эллиптического уравнения (3.10) к функционалу скорость
изменения температуры ∂T/∂t представляется функцией f . Проводя выкладки,
аналогичные предыдущему разделу, окончательно выражение в дивергентном виде
записывается:

−div [κ gradT ] = f, где f = −∂T

∂t
(3.14)

С учётом выражения для объёма КЭ (3.9) функционал принимает вид:

Im (Tϱ) =

Rjw
Ri

r

[
κ
(
∂Tϱ

∂r

)2

+ 2
T 2
ϱ

ht

− 2
Tϱ−1Tϱ

ht

]
dr, (3.15)

которое после минимизации
∂ Im (Tϱ)

∂Tϱ

= 0

сводится к виду

k(e)T(e) = f (e), (3.16)

где коэффициенты равны
k
(e)
11

k
(e)
12 = k

(e)
21

k
(e)
22

 =

R
2
j + 2RiRj − 3R2

i 1

R2
j −R2

i −1

3R2
j − 2RiRj −R2

i 1

{ 1/(3ht)

κ(Rj +Ri)/(Rj −Ri)

}
;

{
f
(e)
1

f
(e)
2

}
=

1

6ht

[
R2

j + 2RiRj − 3R2
i R2

j −R2
i

R2
j −R2

i 3R2
j − 2RiRj −R2

i

]{
Tϱ−1, i

Tϱ−1, j

}
.

Отличие полученных коэффициентов от раздела, где аппроксимация температуры по
времени проходила до составления выражения функционала, заключается в правой части
при k(e): 1/(6ht) в выражении (3.13) и 1/(3ht) — в (3.16)
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3.2.3 Апробация методики на модельных задачах

Для объективной оценки существующих и описанных выше подходов к решению задач
поля необходимо провести анализ результатов решения ряда тестовых задач. В качестве
тестовой рассматривается задача в следующей постановке (схему см. на рисунке 3.1, с. 91):
внутренний и внешний радиусы цилиндра, соответственно, равны Ra = 0.008м; Rb =

0.028м. В первоначальный момент времени t0 = 0 ч тело имеет постоянную температуру
Ta = Tb = 28℃. Введение равномерной по радиусу сетки в случае использования МКР или
аппроксимация конечными элементами в случае применения МКЭ выполнено так, чтобы
узлы конечно–разностной сетки совпали с соответствующими узлами конечных элементов;
общее количество узлов равно Nr + 1, где Nr — количество КЭ или интервалов конечно–
разностной сетки. В течение 1.2 ч температура на внутренней поверхности увеличивается
со скоростью vT = 60℃/ч до значения Ta(1.2 ч) = 100℃, на внешней температура не
изменяется. Общее время моделирования составляет tNt = 3.6 ч, где Nt — количество
интервалов сетки, аппроксимирующих полный период исследования по времени.

Дополнительно введены обозначения для решений при помощи МКЭ: МКЭ1 —
соответствует подходу, изложенному в разделе 3.2.2.1, а МКЭ2 — в разделе 3.2.2.2.

Для оценки сходимости решение тестовой задачи получено для различных параметров
Nr и Nt, результаты представлены в таблице 3.2, а графическое отображение при значениях
Nt = 20 и Nr = 20 — на рисунке 3.4.

Таблица 3.2 — Результаты определения температурного поля тестовой задачи из раздела 3.2.3 в
точке r = 0.018м. МКЭ1 — соответствует подходу, изложенному в разделе 3.2.2.1, а МКЭ2 — в
разделе 3.2.2.2

Решение, полученное при помощи МКР, выступает в качестве эталона, поскольку оно
имеет однозначную аппроксимацию температуры в точке по времени, а также исходная
система уравнений имеет второй порядок точности. Полное совпадение с эталоном дало
решение МКЭ1 (см. раздел 3.2.3). Решение МКЭ2 (см. раздел 3.4) даёт хорошее совпадение
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Рисунок 3.4 — Результаты определения температурного поля тестовой задачи из раздела 3.2.3
при Nt = 20 и Nr = 20

с эталоном при малом значении параметра Nt, т. е. при аппроксимации по времени при
помощи малого количества интервалов, при этом скорость расхождения увеличивается с
ростом параметра Nt, что говорит об ограничении области применения подхода МКЭ2.

3.3 Определение напряжённо-деформированного состояния неоднородного ци-
линдра с учётом температурного нагружения и деформаций ползучести

Плоские задачи принято разделять на два вида, согласно особенностям возникающего
НДС:

— Плоское деформированное состояние (далее — ПДС). Значение относительной
продольной осевой деформации в направлении оси z бесконечно приближается к нулю
(εz = 0), интенсивность напряжения вдоль оси z отлична от нуля σz ̸= 0. ПДС возникает
в случае, если линейный размер цилиндра вдоль оси z во много раз больше внешнего его
наружного радиуса (l ≫ r);

— Плоское напряжённое состояние (далее — ПНС). Значение относительной
продольной осевой деформации в направлении оси z отлично от нуля (εz ̸= 0),
интенсивность напряжения вдоль оси z бесконечно приближается к нулю σz = 0.
ПНС возникает в случае, если линейный размер цилиндра вдоль оси z во много раз
меньше его наружного радиуса (l ≪ r).

В случае промежуточного соотношения линейного размера l цилиндра вдоль оси z

к его наружному радиусу r требуется исследование задачи в полноценной двумерной
постановке.

В практических расчётах ПДС возникает в протяжённых объектах, например,
в трубах. ПНС в практических задачах встречается при исследовании оболочек и
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тонких пластин; в осесимметричной постановке ПНС находит применения в очень
узкоспециализированных вопросах, например, для исследования НДС срезов цилиндров
по результатам проведённых опытов [79, 6, 139, 10, 160, 164]. Дальнейшие выкладки в
настоящей диссертационной работе приводятся для ПДС.

Как говорилось ранее, физико–механические параметры находятся в сильной
функциональной зависимости от значения температуры материала (E = f(T, t)), которая,
в свою очередь, представляется функцией как координат, так и времени (T = f(r, t)),
следовательно, в общем случае переменного во времени температурного поля модуль
упругости полимера может быть представлен функциональной зависимостью от двух
параметров E (r, t). Каждый момент времени рассматривается в квазистатической
постановке, поэтому при исследовании параметров в направлении осей использованы
частные производные, а параметр времени t условно опущен E(r, t) → E(r) = E.

3.3.1 Вывод разрешающих уравнений в напряжениях при помощи метода конечных
разностей

Расчётная схема приведена на рисунке 3.1. В плоской постановке исследование
проводится относительно радиальной оси r, относительно окружной оси θ параметры
неизменны, т. е. ∂

∂θ
= 0. Следовательно, для последующих выкладок выражения (1.1)

и (1.4) используются в следующем виде:

r · ∂σr

∂r
+ σr − σθ = 0; (3.17)

r · ∂εθ
∂r

+ εθ − εr = 0. (3.18)

Выражение полной относительной продольной деформации (1.5), где вынужденная
компонента представлена температурными и деформациями и деформациями ползучести,
записывается:


εr

εθ

εz = 0 — в случае ПДС

︸ ︷︷ ︸
ε

=
1

E

 1 −ν −ν
−ν 1 −ν
−ν −ν 1


︸ ︷︷ ︸

H


σr

σθ

σz

︸ ︷︷ ︸
σ

+


1

1

1

 εT︸ ︷︷ ︸
εT

+


εcr,r

εcr,θ

εcr,z

︸ ︷︷ ︸
εcr︸ ︷︷ ︸

εвын

. (3.19)

Из третьей строки полученного выражения (3.19) выражается интенсивность
напряжения вдоль оси z:
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σz = −E (εT + εcr, z) + ν (σr + σθ) ,

с учётом которой (3.19) переписывается:

{
εr

εθ

}
=

1

E

[
1− ν2 −ν(1 + ν)

−ν(1 + ν) 1− ν2

]{
σr

σθ

}
+

{
1

1

}
[(1 + ν) εT + νεcr,z] +

{
εcr,r

εcr,θ

}
. (3.20)

Из уравнения (3.17) выделяется компонента окружного напряжения σθ:

σθ =
∂

∂r
(r · σr) (3.21)

с последующий подстановкой в (3.20):

{
εr

εθ

}
=

1 + ν

E

[
1− 2ν −rν

1− 2ν r (1− ν)

] 1
∂

∂r

σr +

{
1

1

}
[(1 + ν) εT + νεcr,z] +

{
εcr,r

εcr,θ

}
. (3.22)

Следующим этапом проводится дифференцирование по координате r выражение
относительной окружной деформации εθ из уравнения (3.22):

∂εθ
∂r

= r · 1− ν
2

E
· ∂

2σr

∂r2
+

[
(1 + ν) (1− 2ν)

E
+

1− ν2

E
+ r

(1− ν2)
E2

∂E

∂r

]
∂σr

∂r
−

− (1 + ν) (1− 2ν)

E2
· ∂E
∂r

· σr +
∂εT
∂r

(1 + ν) +
∂εcr, θ
∂r

+ ν
∂εcr, z
∂r

. (3.23)

Полученные соотношения (3.22) и (3.23) подставляются в уравнение (3.18),
окончательное выражение записывается относительно радиального напряжения σr:

∂2σr

∂r2
+φ(r)

∂σr

∂r
+ψ(r)σr = f(r), (3.24)

где
φ(r) =

3

r
− 1

E
· ∂E
∂r

;

ψ(r) = −1

r
· 1− 2ν

1− ν
· 1
E

· ∂E
∂r

;

f(r) = − E

r (1− ν)

[
∂

∂r
(α ·∆T ) +

1

1 + ν

(
∂εcr, θ
∂r

+ ν
∂εcr, z
∂r

+
εcr, θ − εcr, r

r

)]
.

Для нахождения численного решения полученного неоднородного дифференциального
уравнения (3.24) по толщине цилиндра в пределах [Ra, Rb] вводится равномерная сетка

ωr =

{
ri = a+ (i− 1) · hr; hr =

Rb −Ra

N
; i = 1, 2, . . . , N + 1

}
,
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после чего разрешающее уравнение (3.24) представляется эквивалентом для поиска
численного решения в узлах сетки с индексами i:

σ′′
ri + piσ

′
ri + qiσri = fi, (3.25)

где производная функции по радиусу заменена знаком штриха «′»;

pi =
3

ri
− E ′

i

Ei

;

qi = − 1

ri
· 1− 2ν

1− ν
· E

′
i

Ei

;

fi = − Ei

ri (1− ν)

[
(α ·∆Ti)

′ +
1

1 + ν

(
ε′cr, θir + νε

′
cr, zir +

εcr, θi − εcr, ri
ri

)]
.

Аппроксимация производных по радиусу выполняется при помощи приведённых
в разделе 1.3.3 формул для численного определения первой (1.31) и второй (1.32)
производных:

σ′′
i =

σri−1 − 2σri + σri+1

h2
r

; σ′
r =

σri+1 − σri−1

2hr

.

Уравнение (3.25) приводится к системе линейных алгебраических уравнений,
записываемых для i-й точки:

aiσri−1 + biσri + ciσri+1 = fi, (3.26)

где
ai =

1

h2
r

− pi
2hr

; bi = qi −
2

h2
r

; ci =
1

h2
r

+
pi
2hr

.

Окончательно матричное представление полученный системы имеет вид
трёхдиагональной матрицы:

1

a2 b2 c2

. . . . . . . . .

ai−1 bi−1 ci−1

ai bi ci

ai+1 bi+1 ci+1

. . . . . . . . .

aN bN cN

1





σr1

σr2

. . .

σri−1

σri

σri+1

. . .

σrN

σrN−1



=



−Pa

f2

. . .

fi−1

fi

fi+1

. . .

fN

−Pb



,

в которой первая и последняя строки фактически представляют собой граничные условия
для напряжений в крайних точках σr1 = −Pa; σr(N+1) = −Pa.
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В проведённых выкладках для получения разрешающей системы уравнений не
учитывается гипотеза, по которой полная относительная продольная деформация
ползучести (εcr) должна суммарно по всем компонентам равняться нулю.

Внешнее давление на краях разностной сетки Pa и Pb принимается приложенным
в течение близкого к нулю интервала времени (∆t = 0), т. е. считается мгновенным.
Соответственно, на начальном этапе осевые компоненты деформаций ползучести
принимаются равными нулю (εcr,i = 0, где i = r, θ, z). Таким образом, в начальный момент
времени задача является упругой.

3.3.2 Решение при помощи метода конечных элементов

Вывод решения при помощи МКЭ можно начать с выражения полной относительной
продольной деформации относительно осей (3.20), введя для удобства дополнительные
обозначения:{

εr

εθ

}
︸ ︷︷ ︸

ε

=
1

E

[
1− ν2 −ν(1 + ν)

−ν(1 + ν) 1− ν2

]
︸ ︷︷ ︸

H

{
σr

σθ

}
︸ ︷︷ ︸

σ

+

{
1

1

}
[(1 + ν) εT ]︸ ︷︷ ︸

εT

+

{
εcr,r + νεcr,z

εcr,θ + νεcr,z

}
︸ ︷︷ ︸

εcr

,

или
ε = H · σ+ εT + εcr.

Интенсивно напряжения представляется:

σ = D · (ε− εT − εcr) ,

где

D = H−1 =

(
1

E

[
1− ν2 −ν(1 + ν)

−ν(1 + ν) 1− ν2

])−1

=
E

(1 + ν) (1− 2ν)

[
1− ν ν

ν 1− ν

]
.

Как говорилось ранее, предполагается, что объёмная относительная деформация
ползучести может быть равна нулю. Поэтому необходимо выделить два варианта:

1. Полная деформация ползучести не равна нулю, т. е.

θcr = εcr, r + εcr, θ + εcr, z ̸= 0,
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{
σr

σθ

}
︸ ︷︷ ︸

σ

= [D]


{
εr

εθ

}
︸ ︷︷ ︸

ε

− (1 + ν)

{
1

1

}
εT︸ ︷︷ ︸

εT

−

[
1 0 ν

0 1 ν

]
εcr, r

εcr, θ

εcr, z

︸ ︷︷ ︸
εcr

 . (3.27)

2. Полная деформация ползучести равна нулю, т. е.

θcr = εcr, r + εcr, θ + εcr, z = 0,

{
σr

σθ

}
︸ ︷︷ ︸

σ

= [D] ·


{
εr

εθ

}
︸ ︷︷ ︸

ε

− (1 + ν)

{
1

1

}
εT︸ ︷︷ ︸

εT

−

[
1− ν −ν
−ν 1− ν

]{
εcr, r

εcr, θ

}
︸ ︷︷ ︸

εcr

 . (3.28)

В выражении полной энергии системы Э = Π − W (1.12) необходимо определить
энергию упругой деформации тела Π, при этом внешние силы отсутствуют, следовательно
W = 0. Поскольку в плоских задачах касательные напряжения отсутствуют, то выражение
для Π имеет вид

Π =
1

2

w
V

σTεel dV, (3.29)

где вектор напряжений σ = D (ε− εT − εcr) и вектор относительной деформации εel =

ε− εT − εcr определяются согласно выражениям (3.27) и (3.28) в зависимости от принятой
гипотезы.

Вектор полной относительной деформации ε определяется через перемещения при
помощи соотношений (1.2):

ε =


∂u

∂r
u/r

 ,

где согласно (1.24):

u =
{
Ni NJ

}{ui

uj

}
= NU.

Окончательно:

ε =

 ∂Ni

∂r

∂Nj

∂r
Ni/r Nj/r


︸ ︷︷ ︸

B

{
ui

uj

}
︸ ︷︷ ︸
U

=

− 1

Rj −Ri

1

Rj −Ri

Ni/r Nj/r

{ui

uj

}
= BU. (3.30)
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Поскольку в выражении (3.29) вектор напряжений представлен слагаемыми его
компонентами (3.27) и (3.28), к нему необходимо применять правила транспонирования
матриц

(AB)T = BTAT ,

следовательно справедлива запись

σT = [D (BU− εT − εcr)]
T =

(
UTBT − εTT − εTcr

)
D, (3.31)

где в случае однородного материала матрица D, связанная с его физическими свойствами,
симметрична относительно главной диагонали, т. е.

DT = D.

С учётом (3.31) и (3.30) энергия упругой деформации (3.29) записывается:

Π =
1

2

w
V

(
UTBTD− εTTD− εTTD

)
×
(
BU− εT − εcr

)
dV =

=
1

2

w
V

(
UTBTDBU−UTBTDεT −UTBTDεcr − εTTDBU+

+ εTTDεT + εTTDεcr − εTcrDBU+ εTcrDεT + εTcrDεcr

)
dV. (3.32)

Определяется минимум потенциальной энергии относительно линейных перемещений
с учётом правил дифференцирования (А.6) и (А.7):

∂Э
∂U = 0.

Ранее было сказано, что в постановке задаче отсутствуют внешние силы (W = 0),
следовательно Э = Π:

∂Π

∂U =
1

2

w
V

(
2BTDBU− 2BTDεT − 2BTDεcr

)
dV =

=
w
V

(
BTDBU−BTDεT −BTDεcr

)
dV. (3.33)

Объём КЭ приведён в (3.9):

dV ≈ r dr ≈ r (Rj −Ri) ,
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где
r ≈ Rj +Ri

2
. (3.34)

После ряда преобразования выражение (3.33) сводится к форме:

K ·U = F,

где K =
∑E

e=1 k(e) — глобальная матрица жёсткости; F =
∑E

e=1 f (e) — глобальный вектор
нагрузки;

k(e) = BTDBU · r (Rj −Ri) ;

f (e) =
(
BTDεT +BTDεcr

)
· r(Rj −Ri).

Поскольку внешние силы отсутствуют, то нагружение стержня будет производиться
за счёт возникновения компонент относительной деформации: температурной и развития
ползучести. Необходимо сформировать граничные условия, учитывающие как возможное
наличие внешних силовых факторов, так и вынужденные компоненты полной деформации.
В случае наличия давления на внутренней или внешней поверхностях тела (Pa и Pb

соответственно), граничные условия записываются

σr (ra) = −Pa; σr (rb) = −Pb, (3.35)

Используя выражение для определения интенсивности напряжений через
относительные деформации (1.9)

σr = λθ+ 2µεr − 3KεT − 2µεcr, r − λθcr,

где для удобства записи использованы параметры Ламе:

λ =
Eν

(1 + ν) (1− 2ν)
; µ = G =

E

2 (1 + ν)
;

K =
E

3 (1− 2ν)
; θcr = εcr, r + εcr, θ + εcr, z.

Спустя рад алгебраических операций полные деформации записываются:

εr (1− ν) + νεθ =
σr

E
(1 + ν) (1− 2ν) + (1 + ν) εT + (1− 2ν) εcr, r + νθcr. (3.36)
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Осевые компоненты полной деформации εr и εθ связаны с перемещениями через
выражение (3.30), откуда:

ui

(
− r + νRj

r (Rj −Ri)

)
+ uj

(
r − νRi

r (Rj −Ri)

)
=

=
σr

E
(1 + ν) (1− 2ν) + (1 + ν) εT + (1− 2ν) εcr, r + νθcr (3.37)

для гипотезы θcr ≠ 0, или

ui

(
− r + νRj

r (Rj −Ri)

)
+ uj

(
r − νRi

r (Rj −Ri)

)
=

=
σr

E
(1 + ν) (1− 2ν) + (1 + ν) εT + (1− 2ν) εcr, r, (3.38)

для гипотезы θcr = 0.
В выражениях (3.37) и (3.38) интенсивность напряжения σr определяется согласно

граничным условиям (3.35).

3.3.3 Решение модельных задач

Исследуется НДС цилиндра, изготовленного из эпоксидного связующего ЭДТ–
10, теплофизические параметры которого приняты из работы [97]: коэффициент
теплопроводности λ = 0.17Вт/ (м · град); плотность материала ρ = 1250 кг/м3; удельная
теплоёмкость c = 0.35 кДж (кг · град), физико–механические параметры описываются
выражениями (2.65); радиусы цилиндра ra = 8мм и rb = 28мм; давление на поверхностях
цилиндра отсутствует Pa = Pb = 0МПа.

В радиальном направлении вдоль оси r наложена сетка с количеством интервалов
100шт. для МКР; такое же количество элементов использовано для МКЭ. Весь период
времени представлен сеткой со 100 интервалами.

Модельная задача ограничивается периодом времени 3.6 ч (tNt = 3.6 ч). В момент
времени (t0 = 0) распределение температуры по радиусу цилиндра постоянно и составляет
Ta = Tb = 28℃. В течение 1.2 ч температура на внутренней поверхности цилиндра (r = ra)
увеличивается со скоростью vT = 60℃/ч до значения Ta(1.2 ч) = 100℃, на внешней — не
изменяется.

Решение задачи производится по методике, изложенной ранее в главе 2.2.2 на с. 61.
Результаты рашения модельной задачи представлены на рисунках 3.5–3.10 (стр. 113–

118).
Изменение температурного поля в значительной степени сказывается на значениях

физико–механических параметров полимера (рисунки 3.5 и 3.6), в результате в радиальном
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направлении цилиндр приобретает неоднородность (подобный тип неоднородности
называется косвенной или наведённой). Рост температуры приводит к расширению
материала, в результате образуются температурные напряжения, осевые компоненты
которых представлены на рисунке 3.7. Для сравнения решений, полученных при помощи
МКР и МКЭ, графики изменения напряжений были построены двумя типами сеток:
цёрно-белая сетка с закрашенными ячейками соответствуют решению при помощи МКР,
цветная сетка без закрашенных ячеек — МКЭ. Сетка интенсивности напряжений для
задачи, решение которой получено при помощи МКР, построена в узлах сетки ωr (3.4),
а для решения при помощи МКЭ — в середине соответствующих КЭ, чем и объясняется
нечёткое совпадение графиков решений на основе двух методов. Значительная степень
совпадения результатов решения модельных задач, полученных при помощи МКР и МКЭ,
говорить об их достоверности. После стабилизации температурного поля наблюдаются
незначительное снижение интенсивности всех осевых компонент напряжения (релаксация).

На рисунках 3.8–3.11 представлены графики изменения компонент относительной
деформации, а также линейных перемещений. Упругие относительные деформации
(рисунок 3.8) в целом по характеру изменения отчасти аналогичны поведению
интенсивности напряжений, с течением времени уровень упругой компоненты снижается.
Деформация ползучести, наоборот, с течением времени увеличивается (рисунок 3.9),
что соответствует процессу релаксации напряжений за счёт роста ползучести. Также
с течением времени увеличиваются линейные перемещения (рисунок 3.10), которые
косвенно позволяют судить о полной относительной деформации.

Для случая ПДС необходимо, чтобы полная относительная осевая деформация была
равна нулю (εz = 0), о чём говорит рисунок 3.11, а. Незначительные отклонения от нуля
(δ < 10−18) связаны с погрешностью ЭВМ в ходе решения задачи и они много меньше
искомых параметров, что также говорит в пользу достоверности полученных результатов.
Об этом же свидетельствует и рисунок 3.11, б, на котором представлена полная объёмная
деформация ползучести для гипотезы, при которой она равна нулю (θcr = εcr, r + εcr, θ +

εcr, z = 0). Отклонения от нуля также весьма малы (δ < 10(−17)), связаны с погрешностью
ЭВМ в ходе решения модельной задачи.
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Рисунок 3.5 — Графики изменения с течением времени: а — температуры; б — модуля упругости
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Рисунок 3.6 — Графики изменения с течением времени: a — модуль высокоэластичности ε∞; б —
модуль скорости m∗; в — коэффициент начальной релаксационной вязкости η∗
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Рисунок 3.7 — Изменение напряжений во времени: a — радиальных σr; б — окружных σθ; в —
осевых σz
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Рисунок 3.8 — Изменение упругих деформаций во времени: a — вдоль оси r; б — вдоль оси θ; в —
вдоль оси z
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Рисунок 3.9 — Изменение деформаций ползучести во времени: a — вдоль оси r; б — вдоль оси θ;
в — вдоль оси z
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Рисунок 3.10 — Перемещения вдоль оси r (а) и изменение деформаций ползучести во времени: б
— вдоль оси r; в — вдоль оси θ
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Рисунок 3.11 — Оценка достоверности полученных данных: а — полная деформация (εz ≈ 0)
вдоль оси z; б — полная деформация ползучести θcr = εcr, r + εcr, θ + εcr, z ≈ 0 вдоль оси z
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3.4 Оптимизация процесса решения задач

Для решения поставленных задач во времени используется пошаговый метод Эйлера,
как было сказано ранее. При этом количество узлов на сетке времени весьма значительно
и может исчисляться сотнями и тысячами. Следовательно, правоверным становится
вопрос о некоторых оптимизационных подходах, позволяющих как упростить некоторые
подходы в решении задач, так не потерять в точности окончательного результата. В
настоящем параграфе предлагаются некоторые варианты оптимизации решения искомых
задач, результаты сопоставляются с модельными задачами без оптимизации из раздела 3.3
(с. 103).

3.4.1 Оптимизация размеров интервалов сетки по времени

Использованный пошаговый метод Эйлера определяет значение искомой функции
в следующем узле сетки времени путём прибавления к значению функции на текущем
узле времени произведения скорости роста функции по времени на последующий интервал
времени. При этом в качестве искомой функции используется относительная деформация
ползучести материала:

εcr,S (t+ 1) = εcr,S (t) +
∂εcr,S (t)

∂t
∆t.

Следствием подобного подхода является зависимость окончательного результата от
количества интервалов использованной по времени сетки. Контролировать достоверность
полученного результата можно путём повторного расчёта, по с повышением количества
интервалов по времени на порядок. Если решение сходится, или погрешность находится в
допускаемом диапазоне, полученные результаты можно считать достоверными.

С другой стороны, увеличение количества математических операций за счёт
увеличения числа интервалов по времени, ведёт к накоплению погрешности, связанной
с точностью выбранного типа данных ЭВМ и её разрядностью; значительно при этом
может увеличить время, необходимое ЭВМ для решения поставленной задачи, поскольку
в случае неоднородных и нелинейных задач необходимо на каждом этапе времени заново
составлять матрицы уравнений.

Имеются численные методы, например, классический метод Рунге–Кутты четвёртого
порядка, в которых сходимость задачи может быть получена при меньшем количестве
интервалов времени. В случае задач ползучести полимеров эти методы не всегда могут
быть использованы по причине наличия неустановившейся ползучести в материале после
приложения нагрузки, или изменения её интенсивности. Следовательно, при больших
размерах интервалов по времени и относительно малом их количестве может быть
пропущена фаза, связанная с явлением неустановившейся ползучести.
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Максимальная скорость роста деформаций ползучести происходит, как правило,
сразу после приложения внешней нагрузки или изменения её интенсивности или вектора.
С течением времени скорость развития ползучести значительно затухает. Следовательно,
рациональным становится использование сетки по времени, в которой длина интервалов
минимальна в самом начале ползучести и увеличивается с течением времени (рисунок 3.12).
При этом можено выделить два простых закона изменения величина интервала сетки
по времени: описываемых логарифмической функцией и определяемым при помощи
геометрической прогрессии.

Рисунок 3.12 — Переменный интервал сетки по времени: t — момент времени на текущем узле;
ht,i — величина i-го интервала сетки по времени; Nt — полное количество интервалов сетки по

времени

Длина интервалов сетки по времени согласно логарифмическому закону
определяется [79]:

t(i) = exp
( lg(tNt+1)

Nt(i− 1)

)
− 1, i = 1 . . . Nt + 1.

В решении модельных задач будет показано, что распределение согласно
логарифмическому закону не даёт существенный выигрышь в схождении решения с
течением времени, следовательно, оно не является оптимальным.

В случае распределения при помощи геометрической прогрессии базовым параметром
выступает соотношение размера последнего интервала сетки по времени ht,Nt к
первоначальному ht,1:

k =
ht,Nt

ht,1

,

где Nt — полное количество интервалов сетки по времени.
Величина произвольного n-го интервала прогрессии, где нумерация n производится с

1, может быть определена [27]:
ht,n = ht,1q

(n−1), (3.39)

где ht,1 — первоначальный интервал n = 1 сетки по времени; q — знаменатель прогрессии.
Полный расчётный период времени, соответствующий значению в узле tNt+1,

определяется суммой
SN =

b1 (1− qn)

1− q
= tNt+1. (3.40)

Знаменатель прогрессии q выражается из (3.39):

q = k

 1

n− 1


,
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подстановка которого в (3.40) позволяет определить величину первоначального интервала
n = 1 сетки по времени

ht,1 = tNt+1
1− q

1− qn
.

3.4.2 Уточнение координаты центральной точки конечного элемента

Получение матрицы жёсткости и вектора нагрузок сопряжено с необходимостью
интегрирования ряда параметров, в которые входит координата r для плоских задач (см.
рисунок 3.2, с. 94) и z — для двумерных. Координата r при численном интегрировании
часто принимается в середине краевых узлов элемента i и j (3.34), с. 110. Подобный
подход полностью оправдан при моделировании задач в декартовой системе координат,
но вызывает некоторые сомнения при работе с цилиндрическими и сферическими
координатами.

Предлагается использование такой координаты точки r, которая делит
рассматриваемый КЭ на два равных объёма: внутренний, определяемый координатами от
Ri до r, и внешний, определяемый координатами от r до Rj. Пусть угол θ составляет 360
градусов (см. рисунок 3.2, с. 94), а высота КЭ условно принимается hZ = 1. В этом случае
необходимо выполнение равенства «внутренней» площади «внешней»:

π
(
r2 −R2

i

)
= π

(
R2

j − r2
)
,

откуда требуемая координата r определяется:

r =

√
R2

j +R2
i

2
. (3.41)

3.5 Решение модельных задач и анализ эффективности оптимизационных
подходов

Как и ранее, производится сопоставлений решения модельных задач из раздела 3.3.3,
на с. 111, полученного при помощи МКЭ и МКР. Сопоставление данных, представленных
в таблицах 3.3 и 3.4 производится по интенсивности окружного напряжения σθ, как
преобладающей по абсолютной величине над остальными компонентами полного
напряжения, кроме того, оно имеет дифференциальную зависимость от перемещений в
решениях при помощи МКЭ и МКР, следовательно, при значительных параметрах Nr и
Nt интенсивность σθ приближается к некоторому значению, что позволяет делать выводы
о сходимости результатов решения модельной задачи. Варьируется количество интервалов
сетки по радиусу Nr, по времени Nt; шаг сетки по времени при этом рассматривается:
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постоянным ht,i = const, согласно логарифмическому распределению и в соответствии с
геометрической прогрессией.

В результате анализа полученных результатов некоторым «эталоном» при Nr = 501

и Nt = 500 является интенсивность окружного напряжения σθ = −3.80МПа для i = 1 и
σθ = 5.40МПа для i = Nr.

Результаты решения модельной задачи для равномерного по времени шага, на
первый взгляд даёт меньшее отклонение при вариации параметров Nr и Nt, однако, это
не так, поскольку оно слабо соответствует решению при большем количестве Nr и Nt

на начальных этапах. Как говорилось ранее, это связано с явлением неустановившейся
ползучести в материале, выражаемых характерными для полимеров «черпаками» на
рисунках 3.7, 3.8 и 3.9. В рассматриваемой модельной задаче явление неустановившейся
ползучести наблюдается на весьма продолжительном интервале времени, поэтому и
показывает весьма хорошую сходимость с «эталоном». В ином случае, где по сравнению с
полным периодом моделирования интервал с неустановившейся ползучесть значительно
меньше по продолжительности, расхождение будет весьма заметно и превосходство
логарифмического распределения интервалов, а тем более, согласно геометрической
прогрессии, наиболее очевидно, поскольку этап с неустановившейсся ползучестью может
даже не попасть на сетку, накладываемую на полный период исследования (подобная
ситуация приводится в разделе 6, при моделировании длительной прочности адгезионного
соединения на полном периоде, исчисляемом годами).

Вывод: наибольшую точность по сравнению с «эталоном» даёт решение при
наложении сетки по времени, распределение интервалов в которой произведено согласно
геометрической прогрессии.

3.6 Выводы по главе

1. Доказано, что составление разрешающих уравнений при помощи МКЭ для решения
задачи теплопроводности необходимо производить с аппроксимацией дифференциала
скорости изменения температуры по времени разностным аналогом до перехода от
эллиптического уравнения к соответствующему функционалу поля.

2. Предложен ряд оптимизационных подходов для численного решения модельных
задач: наложение сетки по времени с переменными по величине интервалами и
использование вместо координаты центра тяжести r для КЭ такой координаты точки r,
которая делит рассматриваемый КЭ на две равные части.

3. Рекомендовано для моделирования продолжительных во времени процессов
ползучести в полимерных материалах использовать переменные интервалы сетки по
времени, что позволяет учесть развитие неустановившейся ползучести. Данный подход
апробирован на решении модельных задач.
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Таблица 3.3 — Изменение интенсивности окружного напряжения σθ в результате решения
модельной задачи из раздела 3.3.3 при: равномерном и логарифмическом шагах по времени
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Таблица 3.4 — Изменение интенсивности окружного напряжения σθ в результате решения
модельной задачи из раздела 3.3.3 при шагах по времени в соответствии с геометрической
прогрессией
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Глава 4. Влияние физических полей на НДС цилиндра

4.1 Изменение НДС в цилиндре из ПЭВП с учётом добавок в материале и под
воздействием γ-излучения

Объектом исследования в настоящем разделе является цилиндр из ПЭВП, основное
описание которого было представлено в разделе 1.1.

Материал может подвергаться ионизирующего излучению, как правило, γ-излучения,
для появления дополнительных связей — сшивок, что позволяет модифицировать
свойства полимера и приблизить их требуемым эксплуатационным качествам. Облучение
также приводит к стерилизации готового изделия, что особо важно для медицинской
отрасли. Дополнительно в материал могут вводиться различные добавки, например,
частицы гидроксиапатита (далее — ГА), который при использовании в полимере для
изготовлении имплантов приближает их качества к костной ткани, что благоприятно
сказывается на работе изделия в живом организме.

За основы взяты кривые релаксации ПЭВП (см. рисунок 4.1), опубликованные
зарубежными учёными О.Алотманом с коллегами [174], полученные при следующих
условиях: температура T = const = 25℃; полная относительная продольная деформация
стержня ε = 3% = 0.03, полное время исследования t = 3 ч; в случае облучения материала
интенсивность γ-излучения росла со скоростью vΦ = 5 кГр/ч до своего конечного
значения. Испытания приводятся для четырёх режимов: «чистый» материал без добавок
и облучения (далее — режим (0,0)); изделие не содержит добавки ГА, конечный уровень
интенсивности γ-излучения составляет 70 кГр (далее — режим (0,70)); изделие содержит
30% ГА, без облучения (далее — режим (0.3,0)); изделие содержит 30% ГА, конечный
уровень интенсивности γ-излучения составляет 70 кГр (далее — режим (0.3,70)).

Анализируя полученные кривые, установили, что релаксация нанокомпозитов с ГА
и облученных образцов оказывается боле выраженной, чем образцы из чистого ПЭВП.
Также уровень начального напряжения и напряжения в конце процесса релаксации имеют
более высокие значения по сравнению с необлучёнными образцами. Рост напряжения в
начальный момент времени (t = 0) объясняется присутствием наночастиц ГА в полимерной
матрице ПЭВП и, как следствие, изменением жёсткости. Из анализа рисунка 4.1 следует,
что релаксация напряжения ПЭВП с добавками ГА и облучением через 3 часа проведения
испытания составила 37% от его значения в начальный момент времени, при этом
снижение напряжения для ПЭВП без добавок и облучения снизились всего на 24% от
начального значения. В медицинской сфере нанокомпозит ПЭВП с ГА способен больше
уменьшать напряжения в заменителях кости со временем, что положительно сказывается
на его работе совместно с организмом при протезировании. Аналогичный положительный
эффект наблюдается и при использовании нанокомпозита ПЭВП в строительстве.
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Рисунок 4.1 — Кривые релаксации напряжения в изделии из ПЭВП, полученные
О.Алотманом [174]: 1 — режим (0,0); 2 — режим (0,70); 3 — режим (0.3,0); 4 — режим (0.3,70)

4.1.1 Определение упругих и реологических постоянных ПЭВП

Дальнейшие выкладки основаны на методике, приведённой в параграфе 2.2 (стр. 54),
при этом будут использоваться некоторые отличия в методике определения скорости
изменения напряжения от времени. Материалы данного параграфа отражены автором в
научной публикации [209].

За основу анализа и последующего определения упругих и реологических параметров
ПЭВП и его нанокомпозита был использован график 4.1 из работы [174].

В связи с большим количеством точек на графиках напряжения–деформации (σ–ε),
их данные в табличной форме в параграфе не приводятся.

В основе последующих действий лежит алгоритм, приведённый в разделе 2.2. Для
определения скорости деформаций используется подход с применением функции polyfit
из программного комплекса Matlab, которая имеет вид

p = polyfit(x, y, n)

и находит коэффициенты полинома p(x) степени n, который аппроксимирует функцию y(x)

с применением метода наименьших квадратов. Выходом является строка p длины n + 1,
содержащая коэффициенты аппроксимирующего полинома:

p(x) = p1x
n + p2x

n−1 + · · ·+ pnx+ pn+1.
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Происходит подбор коэффициентов аппроксимирующего полинома по трём точкам
(квадратный полином или полином 2-й степени), который имеет вид с учётом вида
исходных функций

σi = p1t
2 + p2t+ p3. (4.1)

Для определения искомой производной функции в каждой точке, произведём
дифференцирование выражения (4.1) по времени:

σ′
i = 2p1t+ p2. (4.2)

Напомним, что штрихом «′» обозначаем производную по времени.
Таким образом, использование функции polyfit позволяет достаточно быстро и удобно

получить необходимые коэффициенты p1 и p2, затем при помощи выражения (4.2) —
определить скорость роста функции напряжения во времени.

Следующий ход действий не отличается от приведённого в параграфе 2.2. Результаты
определения упругих и реологических параметров нелинейного уравнения Максвелла–
Гуревича приведены в таблице 4.1

Таблица 4.1 — Упругие и релаксационные параметры ПЭВП

Так как в результате определения получаем 4 значения каждого переменного в
зависимости от доли ГА (GA, доля изменяется от 0 до 0.3) и уровня облучения полимера
Φ, кГр. Для определения переменных при промежуточных значения доли ГА и уровня
облучения, произведём интерполяцию при помощи полинома, имеющего вид:

f(x, y) = a+ bx+ cy + dxy. (4.3)

Тогда выражение модуля упругости, модуля высокоэластичности, модуля скорости и
коэффициента начальной релаксационной вязкости в зависимости от доли ГА и уровня
облучения Φ имеет вид:

E(ГА,Φ) = 694 + 1251 · ГА+ 2.908 ·Φ− 4.498 · ГА ·Φ [МПа]; (4.4)
E∞(ГА,Φ) = 228.9 + 1093 · ГА+ 2.276 ·Φ− 1.5 · ГА ·Φ [МПа]; (4.5)
m∗(ГА,Φ) = 5.545 + 8.501 · ГА+ 0.01283 ·Φ+ 0.05456 · ГА ·Φ [МПа]; (4.6)
η∗0(ГА,Φ) = 1113 + 2398 · ГА+ 8.877 ·Φ− 32.64 · ГА ·Φ [МПа · ч]. (4.7)
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На рисунке 4.2 представлены соответсвующие графики изменения физико–
механических параметров ПЭВП как функции доли ГА и уровня облучения Φ.

а б

в г

Рисунок 4.2 — Зависимость физико–механических параметров ПЭВП в зависимости от доли ГА
(GA) и уровня облучения Φ: а — модуля упругости E(ГА,Φ); б — модуля высокоэластичности
E∞(ГА,Φ); в — модуля скорости m∗(ГА,Φ); г — коэффициента начальной релаксационной

вязкости η∗0(ГА,Φ)

Проанализировав выражения (4.4)–(4.7) и соответствующие им графики на
рисунке 4.2, делаем вывод, что с ростом доли ГА и уровня излучения все упругие и
реологические параметры увеличиваются, некоторое исключение составляет коэффициент
начальной релаксационной вязкости, который при одновременном введении ГА и
облучением материала имеет величину примерно такую же, как только при введении ГА,
или только облучением ПЭВП.

4.1.2 Задача релаксации напряжений

Для оценки достоверности полученных упругих и реологических параметров
уравнения Максвелла–Гуревича, получим теоретические кривые релаксации напряжений
с использованием полученных зависимостей изменения параметров (4.4)–(4.7) и сравним
их с опытными кривыми, по которым они были определены.
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Полная деформация испытываемого стержня складывается из упругой и
высокоэластической, и равна некоторой постоянной величине (так как в этом случае
наблюдается одноосное напряжённое состояние, в дальнейших выкладках индекс оси
стержня x писать не будем):

ε = εel + εcr =
σ

E
+ εcr = const = 0.03мм.

Из этого выражения можно определить напряжение в любой момент времени

σ = E (ε− εcr) . (4.8)

Напряжение в начальный момент времени может быть определено умножением
модуля упругости материала на начальную деформацию, постоянную в течение всего
времени проведения опыта

σ(0) = Eε.

В самом начале эксперимента высокоэластическая деформация равна нулю, таким
образом можно определить деформацию ползучести на следующем временном этапе

εcr(t+ 1) = εcr(t) +
∂εcr(t)

∂t
∆t;

∂εcr(t)

∂t
=

f ∗

η∗
; f ∗ = σ− E∞εcr; η∗ = η∗0 exp

(
−|f ∗|

m∗

)
.

Как говорилось ранее, на начальном этапе высокоэластическая деформация равна
нулю (εcr = 0), тогда на начальном этапе времени t = 0 функция напряжений f ∗

определяется выражением
f ∗ = σ− E∞ εcr︸︷︷︸

=0

= σ.

Таким образом, определяем высокоэластические деформации на следующем этапе
времени εcr(t+1); теперь возможно найти напряжения на следующем этапе времени σ(t+1)

при помощи выражения (4.8). Далее процесс повторяется до достижения последней точки
времени проведения эксперимента.

Для оценки достоверности полученных уравнений (4.4)–(4.7), на рисунке 4.3
(стр. 131) приводится сопоставление опытных графиков (пунктирные линии) релаксации
напряжений с теоретическими (сплошные линии) на основании выражений (4.4)–
(4.7). Совпадение опытных и кривых линии очень хорошее, а небольшие расхождения
объясняются неточностью обработки данных, полученных из анализа рисунков кривых
релаксации напряжений.

Таким образом, появляется возможность предположить поведение кривых релаксации
напряжений при промежуточных значениях долей ГА и уровня облучения. Построим
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Рисунок 4.3 — Результаты сопоставления экспериментальных кривых (пунктирная линия) с
теоретическими (сплошная линия, на основании определённых упругих и реологических
параметров): 1 — чистый ПЭВП, без облучения; 2 — чистый ПЭВП, облучение 70 кГр; 3 —

ПЭВП + 30% ГА, без облучения; 4 — ПЭВП + 30% ГА, облучение 70 кГр

кривые релаксации полиэтилена при следующих значениях ГА и облучения:

ГА = 15% = 0.15; Φ = 35 кГр.

Тогда упругие и реологические параметры для данных уровней ГА и Φ примут
следующие значения:

E(0.15, 35) = 959.8155МПа;
E∞(0.15, 35) = 464.6350МПа;
m∗(0.15, 35) = 7.5556МПа;
η∗0(0.15, 35) = 1.6120 · 103МПа · ч.

Результат расчёта релаксации напряжений облучённого полиэтилена приведен на
рисунке 4.4 (стр. 132). Анализ кривых показывает, что по сравнению с полиэтиленом без
добавок, но подвергшегося облучению, полимер с половинной дозой добавок и половинной
дозой облучения даёт лучшие свойства, но хуже по сравнению с необлучённым полимером,
но с полной порцией добавки ГА.

Таким образом появляется возможность при анализе опытных данных релаксации
напряжений прогнозировать свойства полимерных материалов при промежуточных
значениях параметров. Несомненно, данная возможность ведёт к значительной экономии
материальных ресурсов и человеко-часов на проведение эксперимента и его последующего
анализа.
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Рисунок 4.4 — Сплошная синяя линия — ГА = 15%,Φ = 35 кГр; пунктирные линии: 1 — чистый
ПЭВП, без облучения; 2 — чистый ПЭВП, облучение 70 кГр; 3 — ПЭВП + 30% ГА, без

облучения; 4 — ПЭВП + 30% ГА, облучение 70 кГр

4.2 Оптимизация толстостенных цилиндров путем искусственного создания
неоднородности

4.2.1 Постановка задачи

Из решения задачи Ламе известно, что для однородного толстостенного цилиндра при
действии только внутреннего давления максимальные окружные напряжения возникают у
внутренней поверхности. Таким образом, в данном случае прочностной ресурс материала
используется не полностью.

Для максимального использования прочностного ресурса материала необходимо,
чтобы предельное состояние наступало одновременно во всех точках. Такие конструкции
называются равнопрочными. Если в точках с большими напряжениями снизить модуль
упругости, то напряжения в них снизятся, и наоборот. Таким образом, при изменении
модуля упругости материала в толще конструкции по определенному закону, можно
добиться, чтобы эквивалентное напряжение по какой-либо теории прочности было
постоянно. В этом случае конструкция будет равнонапряжённой. Равнонапряжённая
конструкция может быть равнопрочной, если при изменении модуля упругости материала
его прочность не меняется.

На описанной идее основан разработанный профессором В.И.Андреевым обратный
метод оптимизации конструкций, сущность которого состоит в отыскании таких законов
изменения характеристик материалов, при которых напряжённо-деформированное
состоянии конструкции будет заданным.
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В работах профессора В.И.Андреева и его учеников [6, 10, 104] приводится
решение задачи нахождения закона изменения модуля упругости материала, при
котором толстостенный цилиндр, подверженный действию внутреннего давления, будет
равнонапряжённым по второй или четвертой теории прочности. Аналогичная задача на
основе первой и третьей теории прочности решена в кандидатской диссертации профессора
Б.М.Языева [160]. В работе доцент А.С.Чепурненко [149] приводится решение указанной
задачи на основе теории прочности Мора и показывается, что данное решение включает в
себя как частный случай первую, вторую и третью теории прочности.

Все перечисленные выше решения выполнены аналитически, что накладывает
ограничение на используемую теорию. Нами предлагается численный алгоритм
оптимизации конструкций, основанный на последовательном решении прямых задач
для неоднородного тела.

Суть предлагаемого алгоритма состоит в следующем:
1. На первом этапе численно, методом конечных разностей или методом конечных

элементов, рассчитывается однородная конструкция при E = const, определяются
эквивалентные напряжения по заданной теории прочности.

2. В каждой точке модуль упругости корректируется по формуле:

Ei = Ei
1 + σэкв,i/σ0

2
, (4.9)

где σэкв,i — эквивалентное напряжение в i-й точке, σ0 — эквивалентное напряжение на
внутренней поверхности при r = a.

Модуль упругости у внутренней поверхности при этом будет оставаться постоянным.
Выполняется расчет с откорректированными значениями модуля упругости, и так же

определяются эквивалентные напряжения.
3. Пункты 2–3 повторяются до тех пор, пока разница между значениями модуля

упругости у внешней поверхности на предыдущем и последующем шаге не станет меньше
заранее заданной погрешности.

В случае использования МКР для определения напряженно-деформированного
состояния неоднородного цилиндра можно пользоваться уравнением:

d2σr

dr2 +φ(r)
dσ
dr +ψ(r)σr = 0, (4.10)

где
φ(r) =

3

r
− 1

E

dE
dr ; ψ(r) = −1

r

[
1− 2ν

1− ν
1

E

dE
dr

]
.
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4.2.2 Решение модельных задач

Как было показано ранее, при введении в полиэтилен высокой плотности 30%
гидроксиапатита модуль упругости может повышаться до 1.5 раз. Рассмотрим цилиндр из
ПЭВП и найдём, каким должно быть распределение модуля упругости в толще, чтобы он
был равнонапряжённым по 4 классическим теориям прочности. Расчет будем выполнять
при следующих исходных данных: a = 15 см, b = 22 см, ν = 0.3, p = 1МПа. Начальное
значение модуля упругости ПЭВП без добавок E0 = 694МПа.

На рисунке 4.5 (стр. 137) представлены графики изменения модуля упругости по
радиусу для равнонапряжённого цилиндра в случае использования с первой по четвертую
теорию прочности.

Для всех полученных кривых выполнялось сравнение с аналитическими решениями
профессора В.И.Андреева и профессора Б.М.Языева [164, 178]. Расхождение результатов
незначительное. Из представленных графиков видно, что наибольшая разница между
модулями упругости на внутренней и внешней поверхности требуется по третьей теории
прочности, а наименьшая — по первой. Третья и четвертая теория дают достаточно
близкие результаты.

Зная, как меняется модуль упругости в зависимости от содержания гидроксиапатита
(4.4), можно найти содержание гидроксиапатита по формуле:

ГА, % =
E − 694МПа
1251МПа · 100%.

На рисунке 4.6 (стр. 137) приведены графики изменения содержания гидроксиапатита,
соответствующие четырем теориям прочности. Из представленных графиков видно, что за
исключением первой теории прочности, в остальных случаях содержание гидроксиапатита
выходит за пределы имеющихся у нас экспериментальных данных (превышает 30% на
внешней поверхности).

При меньшей толщине оболочки потребуется меньшая разница между модулем
упругости на внутренней и внешней поверхности, но и эффект от создания искусственной
неоднородности окажется меньше.

Практическая реализация равнонапряженного цилиндра может быть выполнена
по методике, предложенной профессором Б.М.Языевым [164]. Полимерная масса
смешивается с тонкодисперсным минеральным наполнителем. Далее композиционный
материал помещается в цилиндрическую форму, которая вращается в процессе
отверждения полимера. При этом твердая фаза смещается к периферии под действием сил
инерции, неравномерно распределяясь по радиусу цилиндра, в результате чего происходит
изменение модуля упругости. Изменяя тип наполнителя и его процентный состав, а
также скорость вращения центрифуги, можно приблизить функцию изменения модуля
упругости к необходимой.
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В результате создания искусственной неоднородности происходит заметное снижение
максимальных напряжений. На рисунке 4.7 (стр. 138) приведены графики распределения
по радиусу напряжений σθ для однородного и равнонапряженного по 1-й теории прочности
цилиндра. Максимальные напряжения снизились с 2.73 до 2.14МПа, т. е. в 1.28 раза.

Ранее не исследовался вопрос, как будет вести себя равнонапряженный цилиндр в
процессе ползучести.

В однородном цилиндре при действии только статической нагрузки в процессе
ползучести напряжения σθ сначала релаксируют, а потом происходит возврат к упругому
решению (рисунок 4.8, стр. 138). Этому есть следующее объяснение. В работе [42]
показывается, что для получения решения в конце процесса ползучести при использовании
одночленного варианта уравнения Максвелла-Гуревича достаточно заменить в упругом
решении мгновенные постоянные E и ν на длительные Ẽ и ν̃, определяемые по формулам:

Ẽ =
E · E∞

E + E∞
; ν̃ = ν

1 +
E

2νE∞

1 +
E

E∞

. (4.11)

Поскольку в решении Ламе распределение напряжений не зависит от упругих
постоянных, то в конце процесса ползучести оно будет таким же, как и в начале.

В результате расчета цилиндра, содержание гидроксиапатита в котором меняется в
соответствии с рисунком 4.8 (теория 1), нами было установлено, что равнонапряжённый
в начальный момент времени цилиндр перестает быть равнонапряжённым в процессе
ползучести. Графики распределения по радиусу напряжений σθ в начале и в конце
процесса ползучести приведены на рисунке 4.9 (стр. 139). У внутренней поверхности
с течением времени напряжения убывают, а у внешней возрастают, что показано на
рисунке 4.10 (стр. 139). Объясняется это тем, что модуль упругости (4.4) и модуль
высокоэластичности (4.5) неодинаково зависят от содержания гидроксиапатита.

Поставим задачу оптимизации следующим образом: требуется найти такое
распределение содержания наполнителя в толще конструкции, чтобы она была
равнонапряжённой в конце процесса ползучести. Алгоритм оптимизации похож на
изложенный выше, но имеются отличия. Вместо величин E и ν следует оперировать
длительными постоянными Ẽ и ν̃. На первом этапе так же рассчитывается однородная
конструкция при Ẽ = const, ν̃ = const. Далее длительный модуль Ẽ корректируется по
формуле (4.9). По откорректированным значениям Ẽ определяется требуемое содержание
гидроксиапатита. На основе формул (4.4) и (4.5), а также (4.11):

Ẽ =
E · E∞

E + E∞
=

(694 + 1251 · ГА)(228.9 + 1093 · ГА)
922.9 + 2344 · ГА .
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При известном значении Ẽ данное равенство представляет квадратное уравнение
относительно величины ГА, из которого нетрудно найти содержание гидроксиапатита.

Далее корректируется модуль высокоэластичности и модуль упругости по формуле:

E = 694 + 1251 · ГА [МПа] ;
E∞ = 228.9 + 1093 · ГА [МПа] .

Затем по известным значениям E и E∞ определяется длительный коэффициент
Пуассона в каждой точке по второй формуле в (4.11).

Таким образом, на втором и последующих шагах оптимизации переменным по радиусу
оказывается не только длительный модуль упругости, но и длительный коэффициент
Пуассона. Для определения НДС можно так же использовать уравнение (4.10), но функции
φ(r) и ψ(r) следует вычислять по формулам:

φ(r) =
3

r
− 1

E

dE
dr −

2ν
dν
dr

1− ν2
;

ψ(r) = −1

r

[
1− 2ν

1− ν
1

E

dE
dr +

(1 + 4ν)

1− ν2
dν
dr

]
.

Также для расчета НДС неоднородного цилиндра можно воспользоваться МКЭ.
На рисунке 4.11 (стр. 140) представлен график изменения содержания

гидроксиапатита по радиусу для равнонапряженного по 1-й теории прочности в конце
процесса ползучести цилиндра. Из данного графика видно, что в отличие от рисунка 4.6,
максимальное содержание наполнителя заметно меньше.

Распределение напряжений σθ по радиусу в начале и в конце процесса ползучести
показано на рисунке 4.12 (стр. 140). Рисунок 4.13 (стр. 141) показывает графики изменения
во времени окружных напряжений у внутренней и внешней поверхности. Из указанных
графиков видно, что в начальный момент времени напряжения у внутренней поверхности
выше, чем у внешней, а в процессе ползучести при r = a напряжения убывают, при r = b

— возрастают, и наступает равнонапряжённое состояние.
Покажем также, как будут выглядеть графики изменения содержания

гидроксиапатита для равнонапряжённых в конце процесса ползучести цилиндров
при использовании второй, третьей и четвертой теории прочности (рисунок 4.14, стр. 141).

Из данного графика видно, что равнонапряжённые в конце процесса ползучести
цилиндры по всем теориям прочности можно создать, практически не превышая 30%
содержание гидроксиапатита. По 3-й и 4-й теории результаты отличаются незначительно,
это можно объяснить тем, что длительный коэффициент Пуассона близок к 0.5, а при
ν = 0.5 указанные теории в случае ПДС дают одинаковый результат.
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Отметим, что предложенные модели равнонапряжённых конструкций вообще говоря
не являются равнопрочными, поскольку при введении добавок прочность получаемого
композита меняется. Однако, разработанный нами алгоритм после небольшой доработки
позволяет моделировать и равнопрочные конструкции, но для этого необходимо знать,
как зависит прочность от содержания наполнителя; подобная задача в рамках настоящей
работы не ставилась.

Рисунок 4.5 — Изменение модуля упругости по радиусу для равнонапряжённого цилиндра при
использовании различных теорий прочности

Рисунок 4.6 — Содержание гидроксиапатита в зависимости от радиуса для равнонапряжённых по
различным теориям прочности цилиндров
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Рисунок 4.7 — Распределение напряжений σθ по радиусу для однородного и равнонапряжённого
цилиндра

Рисунок 4.8 — Изменение во времени напряжений σθ у внутренней поверхности однородного
цилиндра
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Рисунок 4.9 — Изменение напряжений σθ по радиусу в начале и в конце процесса ползучести для
равнонапряжённого в начальный момент времени цилиндра

Рисунок 4.10 — Изменение во времени напряжений σθ у внутренней и внешней поверхности
равнонапряжённого в начальный момент времени цилиндра
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Рисунок 4.11 — Изменение содержания гидроксиапатита по радиусу для равнонапряжённого в
конце процесса ползучести по первой теории цилиндра

Рисунок 4.12 — Распределение напряжений σθ по радиусу для равнонапряжённого в конце
процесса ползучести по первой теории цилиндра

140



Рисунок 4.13 — Изменение во времени напряжений σθ для равнонапряженного в конце процесса
ползучести по первой теории цилиндра

Рисунок 4.14 — Содержание гидроксиапатита в зависимости от радиуса для равнонапряжённых в
конце процесса ползучести по различным теориям прочности цилиндров
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4.3 Практический расчёт определения НДС изделия с учётом ионизирующего
излучения и добавок

Для оценки влияния на напряжённо-деформированное состояние полимерного тела
различных сочетаний добавок и ионизирующего излучения, рассматриваем задачу расчёта
цилиндра, претерпевающего сжатие (постановка задачи и расчётная схема приводятся на
рисунке 4.15).

Рисунок 4.15 — Цилиндрическое сжимаемое тело конечной длины: постановка задачи и расчётная
схема

Высота тела h = 1 см = 0.010м. Вследствие того, что тело симметрично относительно
горизонтальной оси, достаточно рассмотреть только его половину, в результате чего
исходные данные принимают следующий вид: давление на внутренней грани цилиндра
PA = 0МПа; давление на внешней грани цилиндра PB = 0МПа; давление на верхнем торце
цилиндра PU = −10МПа (минус — сжатие); внутренний радиус Ra = 0.010м; внешний
радиус Rb = 0.050м; координата нижней точки Zmin = 0м; координата верхней точки
Zmax =

h

2
= 0.005м; число интервалов разбиения по времени qnIntT = 20шт; предел
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времени, до которого происходит расчёт limTime = 10 ч. Результаты расчёта задачи
представлены на рисунках 4.16–4.23 (стр. 144–151).

На рисунках 4.16–4.21 на первом графике показано решение задачи в самом начале,
когда отсутствуют упругие деформации и задача сводится к упругому решению. При
решение показано при GA = 0, ϕ = 0 kGr — при иных процентах введения GA и наличии
ионизирующего излучения решение в начальный момент времени зрительно не отличается,
поэтому иные варианты не приводятся.

Если же проводить анализ изменения напряжений σr, σθ, σz и τrz в конце расчётного
периода с начальным, то их максимальный и минимальный уровни увеличиваются в 2–
2.5 раз. Однако в любом теле можно выделить элементарный объём таким образом, когда
на гранях этого объёма нормальные напряжения будут достигать своих максимальных
значений, а касательные — равны нулю (рисунок 4.24). Было принято решение провести
дополнительно анализ изменения главных напряжений максимального σ1 и минимального
σ3.

Из рисунков 4.16–4.21 выделены максимальные и минимальные значения напряжений,
затем построены графики изменения этих параметров во времени (рисунки 4.22 и 4.23.
Здесь отчётливо видно изменение уровня напряжений с течением времени в 2–2.5 раз.
Исключение составляют главные напряжения, которые имеют значительные величины в
начальный момент времени и повышаются не более, чем в 1.5 раза к концу расчётного
периода.

Отличие между базовыми напряжениями (радиальным, окружным, осевым и
касательным) от главных заключается и в разнице проявления реологических процессов.
Так, при отсутствии добавок и наличии ионизирующего излучения, базовые напряжения
стабилизировались через 7 часов с момента приложения нагрузки, а если проводить
анализ изменения главных напряжений, они не стабилизировались и к 10 часам, т. е. к
концу расчётного периода. В случае наличия максимальных добавок GA в полимере и
облучением его ионизирующим излучением, уровень и базовых, и главных напряжений
уменьшается на ≈ 10% по сравнению с чистым образцом полимера. Кроме того,
стабилизация базовых напряжений наблюдается примерно через 4 часа от начала расчёта,
главных — через 6. Образец, в который был добавлен GA и облучённый в половинной
дозе, показывал примерно средние свойства между «чистым» и образцом, с полным
добавлением GA и полным уровнем ионизирующего излучения.

Результаты приведенного в данной главе исследования опубликованы в работах [87,
211].
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Рисунок 4.16 — Распределение радиальных напряжений σr в цилиндрическом полимерном теле в
разные моменты времени в зависимости от добавки ГА и наличия ионизирующего излучения:
а — t = 0 ч, ГА = 0%, Φ = 0 кГр; б — t = 10 ч, ГА = 0%, Φ = 0 кГр; в — t = 10 ч, ГА = 30%,

Φ = 0 кГр; г — t = 10 ч, ГА = 0%, Φ = 70 кГр; д — t = 10 ч, ГА = 30%, Φ = 70 кГр; е — t = 10 ч,
ГА = 15%, Φ = 35 кГр
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Рисунок 4.17 — Распределение окружных напряжений σθ в цилиндрическом полимерном теле в
разные моменты времени в зависимости от добавки ГА и наличия ионизирующего излучения:
а — t = 0 ч, ГА = 0%, Φ = 0 кГр; б — t = 10 ч, ГА = 0%, Φ = 0 кГр; в — t = 10 ч, ГА = 30%,

Φ = 0 кГр; г — t = 10 ч, ГА = 0%, Φ = 70 кГр; д — t = 10 ч, ГА = 30%, Φ = 70 кГр; е — t = 10 ч,
ГА = 15%, Φ = 35 кГр
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Рисунок 4.18 — Распределение осевых напряжений σz в цилиндрическом полимерном теле в
разные моменты времени в зависимости от добавки ГА и наличия ионизирующего излучения:
а — t = 0 ч, ГА = 0%, Φ = 0 кГр; б — t = 10 ч, ГА = 0%, Φ = 0 кГр; в — t = 10 ч, ГА = 30%,

Φ = 0 кГр; г — t = 10 ч, ГА = 0%, Φ = 70 кГр; д — t = 10 ч, ГА = 30%, Φ = 70 кГр; е — t = 10 ч,
ГА = 15%, Φ = 35 кГр
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Рисунок 4.19 — Распределение касательных напряжений τrz в цилиндрическом полимерном теле
в разные моменты времени в зависимости от добавки ГА и наличия ионизирующего излучения:
а — t = 0 ч, ГА = 0%, Φ = 0 кГр; б — t = 10 ч, ГА = 0%, Φ = 0 кГр; в — t = 10 ч, ГА = 30%,

Φ = 0 кГр; г — t = 10 ч, ГА = 0%, Φ = 70 кГр; д — t = 10 ч, ГА = 30%, Φ = 70 кГр; е — t = 10 ч,
ГА = 15%, Φ = 35 кГр
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Рисунок 4.20 — Распределение главных наибольших по значению напряжений σ1 в
цилиндрическом полимерном теле в разные моменты времени в зависимости от добавки ГА и
наличия ионизирующего излучения: а — t = 0 ч, ГА = 0%, Φ = 0 кГр; б — t = 10 ч, ГА = 0%,
Φ = 0 кГр; в — t = 10 ч, ГА = 30%, Φ = 0 кГр; г — t = 10 ч, ГА = 0%, Φ = 70 кГр; д — t = 10 ч,

ГА = 30%, Φ = 70 кГр; е — t = 10 ч, ГА = 15%, Φ = 35 кГр
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Рисунок 4.21 — Распределение наименьших по значению главных напряжений σ3 в
цилиндрическом полимерном теле в разные моменты времени в зависимости от добавки ГА и
наличия ионизирующего излучения: а — t = 0 ч, ГА = 0%, Φ = 0 кГр; б — t = 10 ч, ГА = 0%,
Φ = 0 кГр; в — t = 10 ч, ГА = 30%, Φ = 0 кГр; г — t = 10 ч, ГА = 0%, Φ = 70 кГр; д — t = 10 ч,

ГА = 30%, Φ = 70 кГр; е — t = 10 ч, ГА = 15%, Φ = 35 кГр
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Рисунок 4.22 — Распределение максимальных и минимальных значений радиальных, окружных,
осевых и касательных напряжений во времени: а — ГА = 0%, Φ = 0 кГр; б — ГА = 0%,

Φ = 70 кГр; в — ГА = 15%, Φ = 35 кГр; г — ГА = 30%, Φ = 0 кГр; д — ГА = 30%, Φ = 70 кГр;
чёрная линия — σr; синяя — σθ; зелёная — σz; красная — τrz
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Рисунок 4.23 — Изменение во времени наименьших главных (сжимающих) напряжений σ3 в теле
с течением времени: 1 — ГА = 0%, Φ = 0 кГр; 2 — ГА = 30%, Φ = 0 кГр; 3 — ГА = 0%,

Φ = 70 кГр; 4 — ГА = 30%, Φ = 70 кГр; 5 — ГА = 15%, Φ = 35 кГр

а

б

Рисунок 4.24 — Демонстрация напряженного состояния на элементарном кубике (а) и положение
главных площадок с главными напряжениями (б)
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4.4 Построение модели равнопрочного толстостенного цилиндра при силовых
и температурных воздействиях

Толстостенные цилиндры в настоящее время находят очень широкое применение в
конструкциях радиационных и тепловых экранов ядерных реакторов, биологических
защит и т. д. В случае если конструкция выполнена из однородного материала,
распределение напряжений в ней, как правило, носит неравномерный характер.
Исчерпание несущей способности возможно лишь в какой–то точке или в небольшой
области. Таким образом, материал в однородных конструкциях часто используется
нерационально.

Одним из способов увеличения несущей способности является создание искусственной
неоднородности. Идея этого метода принадлежит профессору В.И.Андрееву [6, 8, 175, 177].
Суть её заключается в том, что если в какой–то области уменьшить модуль упругости, то и
напряжения в данной области снизятся. Таким образом, можно добиться, чтобы расчетное
напряжение по заданной теории прочности во всех точках конструкции было одинаково.
Но для многих материалов, в том числе бетонов и полимербетонов, с изменением модуля
упругости меняется и прочность, т. е. R = f(E). Таким образом, равнонапряженная
конструкция не будет равнопрочной.

Некоторые задачи оптимизации толстостенных цилиндров и сфер приводятся в
работах [6, 149, 175, 177, 161, 162, 163]. Методика создания равнонапряженного цилиндра,
испытывающего температурные и силовые воздействия, изложена в работе [175]. В
настоящей работе впервые приводится задача построения равнопрочного цилиндра c
учетом неравномерного распределения температуры в толще. Решение задачи выполняется
численно.

Рассматривается толстостенный цилиндр, нагруженный внешним давлением pb и
внутренним давлением pa (рисунок 4.25). Температурное поле считаем стационарным.
Температура на внутренней поверхности — Ta, на внешней — Tb = 0 ◦C.

Распределение температуры при таких граничных условиях определяется
выражением [6]:

T = Ta
ln (b/r)
ln (b/a) . (4.12)

Цилиндр находится в условиях плоской осесимметричной задачи теории упругости.
Будем считать, что длина цилиндра достаточно большая, и имеет место плоское
деформированное состояние (ПДС). При этом основное разрешающее уравнение для
неоднородного цилиндра в напряжениях примет вид [6]:

σ
′′

r +

(
3

r
− E

′

E

)
· σ′

r −
1− 2ν

1− ν
· E

′

rE
σr = − EαTT

′

r (1− ν)
. (4.13)
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Рисунок 4.25 — Расчетная схема цилиндра

Штрихом в уравнении (4.13) обозначена производная по r. Граничные условия для
уравнения (4.13) записываются в виде:

σr(a) = −pa; σr(b) = −pb. (4.14)

Уравнение (4.13) удобно решать методом конечных разностей.
Изложим основы алгоритма оптимизации толстостенных конструкций:
1. Решение выполняется методом последовательных приближений. В первом

приближении определяем напряжения для однородной конструкции (E = const).
2. Во втором приближении корректируем модуль упругости в каждой точке по

формуле:
E∗(r) = E(r) · σ0

σрасч(r)
· R(r)

R0

,

где R0 и σ0 — соответственно расчетное сопротивление материала и эквивалентное
напряжение при r = a, R(r) и σрасч(r) — расчетное сопротивление и эквивалентное
напряжение в заданной точке. Рассчитывается неоднородная конструкция с учетом
откорректированных значенийE. Далее пункт 2 повторяется.

3. Итерационный процесс завершается, когда модуль упругости на внешней
поверхности E(b) в предыдущем и последующем приближении отличается не более
чем на 1%.

Задача оптимизации была решена при следующих исходных данных: pa = 0; pb =

100МПа; a = 2м; b = 2.5м; αT = 10−5 1/◦C; ν = 0.2; Ta = 100 ◦C. В качестве материала
был взят полимербетон на основе фурфуролацетоновой смолы (ФАМ), для которого
справедлива следующая зависимость R(E) [8]:

R = ρ+ωE, (4.15)
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где ρ = 126.736МПа и ω = 4.612 · 10−4.
Для полимербетона хорошо согласуется с экспериментальными данными критерий

П.П.Баландина, который в случае трехосного напряженного состояния имеет вид:

σ2
1 + σ

2
2 + σ

2
3 − (σ1σ2 + σ2σ3 + σ3σ1)− (Rb −Rbt) (σ1 + σ2 + σ3) = RbRbt, (4.16)

где σ1, σ2, σ3 — главные напряжения; Rb и Rbt — соответственно расчетные сопротивления
бетона на сжатие и растяжение.

В случае действия на цилиндр внешнего давления при ПДС главные напряжения
определяются следующим образом:

σ1 = σr; σ2 = σz; σ3 = σθ;

σθ = rσ
′

r + σr; σz = ν (σr + σθ)− E(r)αT∆T.
(4.17)

Считая, что прочность бетона на растяжение невелика (Rbt ≈ 0), выражение (4.16)
можно переписать в виде:

σ2
1 + σ

2
2 + σ

2
3 − (σ1σ2 + σ2σ3 + σ3σ1)

(σ1 + σ2 + σ3)
= Rb. (4.18)

Левая часть равенства (4.18) представляет собой эквивалентное напряжение по теории
П.П.Баландина.

На рисунках 4.26 и 4.27 показаны соответственно графики изменения модуля
упругости и эквивалентных напряжений для однородного (штриховая линия),
равнопрочного (синяя линия) и равнонапряженного (красная линия) цилиндра.

Рисунок 4.26 — Изменение модуля упругости
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Рисунок 4.27 — Изменение эквивалентных напряжений

На рисунке 4.28 представлено изменение относительных напряжений σэкв/R для
однородного (штриховая линия) и равнопрочного (сплошная линия) цилиндра.

Рисунок 4.28 — Изменение относительных напряжений для однородного и равнопрочного
цилиндра

Максимальная величина относительных напряжений снизилась с 1.23 до 0.722. Таким
образом, при создании искусственной неоднородности несущая способность оболочки
повысилась в 1.7 раз.

155



4.5 Напряженно-деформированное состояние толстостенной железобетонной
оболочки под действием температурного и радиационного нагружений

В настоящем параграфе объектом исследования является бетонный цилиндр, полый
внутри, подвергающийся воздействию физических полей: температурного потока и
флюенс излучения. Решение задачи производится в двухмерной постановке в осях
r и z при помощи двух численных методов: вариационно–разностного (далее —
ВРМ) и метода конечных элементов (МКЭ). Данный подход позволяет провести
оценку достоверности полученных результатов. Производится моделирование задачи
при изменении коэффициента теплопроводности как функции температуры. Также
приводится прикладная задача об определении напряжённо–деформированного состояния
радиационно–теплового экрана.

4.5.1 Формулировка модели краевой задачи термоупругости при двумерной
неоднородности материала

В случае воздействия на тело физических полей, возможно изменение его физико-
механических параметров, описываемых, в том числе, коэффициентами Ламе в уравнениях
механики, а также модуля объёмного сжатия материала как функции от r и z:

λ = λ (r,z) ; µ = µ (r,z) ; K = K (r,z) ; (4.19)

Одним из главных недостатков любого из аналитических методов является проблема
их применения при наличии неоднородности материала в различных направлениях.
Соответственно, любые дальнейшие выкладки проводятся именно для численных методов
(ВРМ и МКЭ). Базовые выражения (1.9) представляются в дивергентном виде:
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− 3
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∂z
(Kεв) = 0. (4.20)

Частным случаем приведенных уравнений является вариант, при котором
коэффициенты являются величинами постоянными; в этом случае становится возможным
записать уравнения в перемещениях для случая двумерной осесимметричной задачи:
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(4.21)

Решение данной системы (4.20) было получено ранее в замкнутом виде в трудах [10,
191] и в дальнейшем будет применено с целью оценки достоверности решений при помощи
численных методов (ВРМ и МКЭ).

Для использования численных методов в осесимметричных задачах удобно
аппроксимировать сечение цилиндра при помощи прямоугольников, образуемых в
осях r и z:

a ⩽ r ⩽ b; 0 ⩽ z ⩽ H.

Граничные условия в напряжениях при этом формулируются следующим образом:

σr (α,z) = −Pα; τrz (α,z) = qα; α = a,b; (4.22)
σz (r,β) = −Pβ; τrz (r,β) = qβ; β = 0,H, (4.23)

для случая цилиндрического села со свободных закреплением, а также в виде смешанных
граничных условий (при помощи перемещений и напряжений):

u (r,β) = uβ; w (r,β) = wβ; β = 0, H. (4.24)

Для описания граничных условий по остальным частям цилиндра используется
выражение (4.22).

В приведённых выражениях (4.22), (4.23) и (4.24) Pα,β и qα,β представляют собой
интенсивность нормальных и касательных компонент внешней нагрузки в проекциях
на поверхности цилиндрического тела; uβ, wβ — вынужденнные (задаваемые) значения
перемещений на поверхностях цилиндра. Для корректного использования заданных
краевых условий (4.22), (4.23) необходимо сделать переход от компонент перемещений u и
w к компонентам напряжений при помощи уравнений закона Гука в обратной форме (1.9)
и соотношений Коши (1.2).

4.5.2 Аппроксимация краевой задачи вариационно-разностным методом

Окончательные коэффициенты системы (4.20), согласно вариационному принципу
Лагранжа, соответствуют минимуму функционала полной энергии системы [118, 65]:
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I (u,w) = W (u,w)−
w
V

(Ru+ Zw) dV −
w
A

(
R̄u+ Z̄w

)
dA, (4.25)

где W — энергия упругой деформации тела; R, Z — объёмные силы и поверхностных
нагрузок; R̄, Z̄ — поверхностные нагрузки;

W (u,w) =
1

2

w
V

{
E

[(
∂u

∂r
− εв

)2

+
(u
r
− εв

)2
−
(
∂w

∂z
− εв

)2
]
+ ν

(
∂u

∂z
+

∂w

∂r

)}
dV, (4.26)

где εв = εT + εΦ — вынужденные деформации; εT — температурная составляющая; εΦ —
деформаций, вызванных ионизирующим излучением.

Вводится равномерная прямоугольная сетка ω = ωr × ωz, на которой производится
аппроксимации функционала в замкнутой области a ⩽ r ⩽ b; 0 ⩽ z ⩽ H:

ωr = {ri = a+ ihr; i = 0, 1, . . . , Nr; hr = (b− a) /Nr} ;

ωz = {zj = jhz; j = 0, 1, . . . , Nz; hz = H/Nz} .

Вводятся множества:

ω+
r = {ri; i = 1, 2, . . . , Nr} ; ω−

r = {ri; i = 0, 1, . . . , Nr − 1} ;

ω+
z = {zj; j = 1, 2, . . . , Nz} ; ω−

z = {zj; j = 0, 1, . . . , Nz − 1} ,

где применяется обозначение

h̄α =

{
hα, r ̸= a, b; z ̸= 0, H;

h̄α/2, r = a, b; z = 0, H;
α = r, z.

На построенной сетке аппроксимация функционала (4.25) может быть произведена
различными приёмами. В настоящей работе используется простая замена интегралов
квадратурными формулами, в которых производные, соответственно, заменяются
разностными отношениями на основе формул (1.29)–(1.31):

Yr =
Yi+1j − Yij

hr
; Yr̄ =

Yij − Yi−1j

hr
;

Yz =
Yij+1 − Yij

hz
; Yz̄ =

Yij − Yij−1

hz
.

В выражении (4.25) объёмный и поверхностных интегралы вычисляются при помощи
формулы трапеций, а интеграл в выражении (4.26) — представляется при помощи формул
прямоугольников (правых и левых), их линейной комбинацией . Тогда функционал (4.25)
может быть записан:
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(4.27)

Задача минимизации функционала (4.25) сведена к задаче минимизации
аппроксимирующего функционала (4.27) Ih (u,w) по двум перемещениям uij и wij:
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Множество ω−
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Выполняя дифференцирование, можно получить разностную аппроксимацию задачи.
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Для определения полученной разностной схемы используется девятиточечный шаблон
(см. рисунок 4.29). Данный шаблон может быть сопоставлен с прямоугольным шаблоном,
используемом в МКЭ. Разностные производные определяются следующим образом:
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1
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(
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2
j
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− ai− 1
2
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)
;
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2
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2
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)
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(
ai+1j
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2hz
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2hz

)
.

(4.28)

Рисунок 4.29 — Девятиточечный шаблон

4.5.3 Методика решения разностных уравнений

Полученные разностные уравнения приводятся к системе линейных алгебраических
уравнений:

1∑
k,l=−1

(
Akl

ijui+k,j+l +Bkl
ijwi+k,j+l

)
= Fuij

;

1∑
k,l=−1

(
Ckl

ij ui+k,j+l +Dkl
ijwi+k,j+l

)
= Fwij

;

i = 0, 1, , . . . , Nr;

j = 0, 1, , . . . , Nz,

(4.29)

где локальные индексы k, l = 0, ±1 представляются на использованном ранее
девятиточечном шаблоне с центром в точке (ij) (см. рисунок 4.30).
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Рисунок 4.30 — Девятиточечный шаблон

Аналогично МКЭ, для удобства, система уравнений (4.28) приводится к матричному
представлению, при этом вводятся сеточные вектор функции

ū =

∥∥∥∥∥∥∥∥∥∥∥∥∥

u00

...
uij

...
uNrNz

∥∥∥∥∥∥∥∥∥∥∥∥∥
; w̄ =

∥∥∥∥∥∥∥∥∥∥∥∥∥

w00

...
wij

...
wNrNz

∥∥∥∥∥∥∥∥∥∥∥∥∥
и блочный вектор Y =

∥∥∥∥∥ ūw̄
∥∥∥∥∥.

Аналогично вводится вектор, определяющий нагрузки, в том числе, связанные с
возникновением вынужденных деформаций, для правой части выражения (4.28):

F =

∥∥∥∥∥F̄u

F̄w

∥∥∥∥∥ ,
где F̄u =

{
Fu00 , . . . , FuNrNz

}T ; F̄w =
{
Fw00 , . . . , FwNrNz

}T .
В результате система (4.28) представляется:

M · Y = F, (4.30)

где M — блочная матрица

M =

∥∥∥∥∥A D

C D

∥∥∥∥∥ .
где A, B, C и D представляют собой матрицы, составленные из коэффициентов
уравнений (4.28) по введённому ранее девятиточечному шаблону.

Как и ранее, решение систем линейных алгебраических уравнений выполнено в
программном комплексе Octave (MatLab).
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4.5.4 Деформации, вызванные ионизирующие излучением

Аналогично полимерным материалам, ионизирующее излучение вызывает
структурные изменения системы «раствор–бетон», в результате чего возникают
соответствующие деформаций.

В трудах В.Б.Дубровского [39, 40, 41] приводятся исследования многочисленных
линейных и объёмных радиационных деформаций бетонных образцов, которые
использованы как мера по оценке возникающих внутренних дефектор структуры в
результате воздействия ионизирующего излучения.

Количественно значение радиационных деформаций системы «раствор–бетон»
представляет собой сумму двух компонент: деформаций цементного камня и деформаций
зёрен заполнителя. Деформации цементного камня имеют отрицательное значение,
поскольку определяются величиной усадки цементного камня в результате потери воды
при воздействии ионизирующего излучения. При этом, деформации зёрен заполнителя
имеют положительное значение, что определяется переходом в аморфное состояние
соответствующих зёрен заполнителя. Система «раствор–бетон», как правило, имеет
следующий объёмный состав [111]: заполнитель — 60–70%, цементный камень — 15–20%,
что определяет суммарные положительные радиационные деформации.

Радиационные деформации определяются конкретных составом бетонной смеси, а
также конкретным видом и свойствами использованного заполнителя.

В.Б.Дубровским предложена эмпирическая формула, определяющая радиационные
деформации, как функции от флюенса нейтронов:

εΦ =
αDm [exp (βΦ)− 1]

Dm + α exp (βΦ)
· 0.01, (4.31)

где Φ — флюенс нейтронов; εΦ — соответствующая радиационная деформация бетона,
вызванная действием ионизирующего излучения при заданном Φ; Dm — максимально
возможные радиационные деформации бетона данного состава; α, β — коэффициенты,
зависящие от состава бетона и радиационной нагрузки.

Выражение 4.31 чётко демонстрирует явную зависимость деформаций, возникающих
под действием ионизирующего излучения, от уровня флюенса нейтронов и состава бетона.
На рисунке 4.31 представлен график изменения радиационных деформаций от флюенса
нейтронов. Все кривые выходят на горизонтальное плато. Связано это с тем, что для
каждого состава бетона имеется своё предельное значение максимальных деформаций,
определяемых ионизирующем излучением. Уровень флюенса нейтронов определяет
максимальную «глубину» распространения параметра Dm в бетонном массиве.

Аналогично полимерам, воздействие ионизирующего излучения на бетон
приводит к изменению его физико–механических параметров. Информации по
изменению реологических параметров нет. Если говорить про упругие параметры,
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Рисунок 4.31 — Радиационные деформации облученных растворов и бетонов

то экспериментальные изыскания в трудах [111] показывают, что превышения флюенса
нейтронов уровня 1019Н/см2 приводит к снижению значения модуля упругости бетона.
В работе [111] приводится полученная эмпирическая зависимость модуля упругости при
облучении ионизирующем излучением от уровня флюенса нейтронов:

EΦ = E0 [γ− α1 lg (β1Φ)] ,

где E0 — модуль упругости бетона при нормальных условиях; α1, β1, γ — коэффициенты,
зависящие от спектра излучений; Φ — флюенс нейтронов.

В работе [11] академик В.И.Андреев и профессор А. В. Дубровский приводится
выражение, позволяющее определить уровень флюенса нейтронов, превышение которого
приводит к снижению значения модуля упругости бетона:

lg (β1Φ
∗) =

γ− 1

α1

,

где Φ∗ — пороговое значение флюенс нейтронов.

4.5.5 Решение модельных задач

В настоящем разделе приводится ряд модельных задач по определению напряжённо–
деформированного состояния полых цилиндров. Решение ищется для однородных и
неоднородных бетонных тел, вследствие действия ионизирующего излучения на последнее.
В случае, если это представляется возможным, решение ищется аналитически, иначе —
при помощи одного из численных методов, что позволяет дать оценку достоверности
полученных результатов при помощи сопоставления решения задач между собой.

Задача а) Исследуется плоское деформированное состояние бетонного цилиндра
в осесимметричной постановке, претерпевающего воздействие температурного поля,
механическое нагружение отсутствует. В трудах [58, 133] приводится аналитическое
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решение настоящей задачи в случае неизменного уровня температуры Ta на внутренней
поверхности цилиндра, при этом значение температуры Tb на внешней поверхности
равно нулю, а распределение температурного поля в теле в радиальном направлении
описывается согласно логарифмическому закону.

Для решения задачи одним из численных методов граничные условия записываются:

σr (a, z) = σr (b, z) = τrz (a, z) = τrz (b, z) = 0;

τrz (r, 0) = τrz (r,H) = 0;

w (r, 0) = w (r,H) = 0.

В таблице 4.2 приводятся результаты сопоставления решения, полученных при
помощи аналитического и численных методов (МКЭ и ВРМ), при следующих исходных
данных: a = 1.0м; b = 2.0м; H = 1.0м; E = 0.2 · 105МПа; ν = 0.2; Pb = 10МПа; Ta = 300 ◦C.
Сетка использована весьма грубая размером 10× 10.

Таблица 4.2 — Сравнение результатов численного и аналитического решений

Анализ приведённых в таблице 4.2 данных показывает, что, в случае решения
задач при плоском деформированном состоянии, погрешность аналитического решения с
результатами, полученными при помощи МКЭ и ВРМ, не превышает 1.0%.

Задача б) Исследуется НДС бетонного цилиндра конечной длины в осесимметричной
постановке, претерпевающего воздействие как температурного поля, так и внешнего
давления Pв (z).

Решение задачи производится двумя методами: МКЭ и ВРМ. Оценка достоверности
производится путём сопоставления полученных при помощи численных методов
результатов с исследованиями, проведёнными академиком В.И.Андреевым с его
учениками [10, 122] при помощи метода разделения переменных (далее — МРП).

Распределение внешнего давления по высоте цилиндра происходит по следующему
закону:

Pв (z) = 2P 0
в

[
z2 − z1

H
+

1

2π

(
sin 2πz2

H
− sin 2πz1

H

)]
.

Результаты определения перемещений и деформаций представлены в таблицах 4.3
и 4.4. В первой таблице расчёт проводился без учёта изменения свойств материала
под действием температурных полей, во второй — в учётом появления косвенной
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неоднородности, как функции от координаты r (E (r)). Численное решение получено на
сетке 20×20. Сопоставление решений, полученных при МРП и МКЭ/ВРМ, показывает, что
различие по перемещениям не превосходит 3%, по напряжениям — 5%. Необходимость
проведения численного дифференцирования на представленной ранее сетке приводит
к большему расхождению результатов в напряжениях. Если говорить о влиянии
неоднородности материала вследствие наличия температурного градиента, то её учёт
приводит к снижению уровня напряжений до 29% по сравнению с однородным цилиндров.

Таблица 4.3 — Сравнение результатов расчёта однородного цилиндра двумя методами

4.5.6 Решение задачи теплопроводности и ионизации

Определение температурного поля производится путём решения уравнения
теплопроводности [6, 118, 21] и с учётом уравнений, представленных в разделе 1.2.2:

1

r

∂

∂r

[
rλT (T )

∂T

∂r

]
+

∂

∂z

[
λT (T )

∂T

∂z

]
= −qv (4.32)
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Таблица 4.4 — Сравнение результатов расчёта неоднородного цилиндра двумя методами

где граничные условия записываются:

−λT
∂T

∂n
= α (T − Tср) . (4.33)

Здесь T = T (r, z) — температурная функция; λT (T ) — коэффициент
теплопроводности, в общем виде является функцией температуры; qv = qv (r, z) —
внутренние источники теплоты, обусловленные наличием иных физических полей,
химическими процессами и т. д.; α — коэффициент теплоотдачи; Tср — температура
окружающей среды; n — внешняя нормаль к границе.

Расчётная схема представлена на рисунке 4.32. Граничные условия записываются:

r = a, −λT
∂T

∂r
= αa

(
T − T a

ср
)
;

r = b, −λT
∂T

∂r
= αb

(
T − T b

ср
)
;

z = H, −λT
∂T

∂z
= αH

(
T − TH

ср
)
;

z = 0, T = T0 (r) .

(4.34)
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Рисунок 4.32 — Расчётная схема защиты: 1 — корпус реактора; 2 — теплоизоляция;
3 — радиационно-тепловой экран («сухая защита»); 4 — биологическая защита; 5 — каналы

охлаждения

Здесь T a
ср (z), T b

ср (z), TH
ср (r) — температуры окружающей среды на боковых (при r =

a, b) и торцовой (z = H) поверхностях цилиндра; αa (z), αb (z), αH (r) — коэффициенты
теплоотдачи на этих поверхностях.

Вводится допущение, что масса основания исследуемой конструкции значительно
превышает её вес, этим обусловлена запись в выражении (4.34) граничного условия при
z = 0. При этом значение T0 (r) известно.

4.5.7 Аналитическое решение

Распределение температурного поля по радиусу и высоте цилиндра представляется в
виде тригонометрического ряда [102]

T (r, z) =
∞∑
k=0

Rk (r) · cos
kπ

h
z, (4.35)

допускается, что функция тепловыделений разлагается в ряд по косинусам.
Подстановка (4.35) в (4.32), с учётом представления функции тепловыделения в виде

тригонометрического ряда, приводит к системе уравнений относительно Rk (r), имеющих
второй порядок:

d2Rk (r)

dr2 +
1

r
· dRk (r)

dr −
(
kπ

h

)2

Rk (r) =
1

λ
ak (r) , k = 0, 1, 2 . . . , (4.36)

где ak (r) — коэффициенты при косинусах в разложении функции тепловыделений.
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Полученная система (4.36) может быть решена довольно просто в современных
комплексах (Octave, Matlab, Maple и др.), но имеет громоздкие выражения для Rk (r):

Rk (r) = Rk

[
C1k; C2k; I0

(
kπ

h
r

)
; K0

(
kπ

h
r

)
; r

]
, k = 0, 1, 2 . . . , (4.37)

где C1k, C2k — произвольные постоянные, определяющиеся из граничных условий;
I0 (kπr/h) , K0 (kπr/h) — видоизменённые функции Бесселя первого и второго рода.

Параметры C1k, C2k (k = 0, 1, 2 . . . ) возможно найти по следующему алгоритму:
1. производится решение дифференциального уравнения (4.33) относительно Tср;
2. производится замена T (r, z) искомым решением в виде ряда (4.35);
3. производится подстановка в условие конвективного теплообмена (4.34) значения

температуры тела (4.35) и температуры газа-охладителя, представленную в виде функции
T (r, z);

4. уравнения (4.34) преобразуются в бесконечную СЛАУ относительно произвольных
постоянных C1k, C2k (k = 0, 1, 2 . . . ):

AimC1m −
∞∑
k=1

Bika
k
mC1k +Dim · C2m −

∞∑
k=1

= −Fim +
∞∑
k=1

akmGik,

i = 1, 2; m = 0, 1, 2, . . . , (4.38)

где Aim; Bik; Dim; Eik; Fik; akm; Gik — постоянные величины.
Решение полученных уравнений может быть достигнуто относительно просто только в

случае, если функция тепловыделений может быть представлена в виде следующего ряда:

f (r, z) ≈

(
2–3∑
n=0

bnr
n

)
·

(
a0
2

+
2–3∑
m=1

am cos
mπ

h
z

)

и функции Бесселя могут быть разложены:

I0

(
kπ

h
r

)
≈

2–3∑
e=0

der
e, K0

(
kπ

h
r

)
≈

2–3∑
p=0

lpr
p.

В работах [10, 122] указано, что решение полученных систем с точностью до 1–
3% применительно к отдельным случаям биологической и тепловой защит может быть
получено лишь при использовании 40 СЛАУ с 40 неизвестными. Таким образом, подобный
подход нецелесообразен и в дальнейшем используется, в основном, численное решение.
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4.5.8 Численное решение

Для решения задачи, представленной в выражениях (4.32), (4.34), использован
ВРМ [118]. Данный метод был использован для того, чтобы полученная в узлах сетки
температура T (ri, zj) могла быть использована далее и не пришлось прибегать к
дополнительным перестроениям сетки для определения НДС тела.

Полученная в п. 4.5.2 сетка размером ω = ωr × ωz может быть апроксимирована
разностными уравнения и приведена к виду [118]:

1

r
(rλTr̄)r + (λTz̄)z = f, (4.39)

f = −qv (ri, zj) .

λ 1
2
jr 1

2
Tr = r0αa

(
T − T a

ср
)
− hr

2
[(rλTz̄)z − rf ] ; r = a; z ̸= 0, H.

−λNr− 1
2
jrNr− 1

2
Tr̄ = rNrαb

(
T − T b

ср
)
− hr

2
[(rλTz̄)z − rf ] ; r = b; z ̸= 0, H.

−λiNz− 1
2
riTz̄ = riαH

(
T − TH

ср
)
− hz

2
[(rλTr̄)r − rf ] ; r ̸= a, b; z = H.

r 1
2
λ 1

2
Nz

hr

Tr −
r0λ0Nz− 1

2

hz

Tz̄ =
αar0
hr

(
T − T a

ср
)
+
αHr0
hz

(
T − TH

ср
)
+

r0f

2
; r = a; z = H.

−
rNr− 1

2
λNr− 1

2
Nz

hr

Tr̄ −
rNrλNrNz− 1

2

hz

Tz̄ =

=
αbrNr

hr

(
T − T b

ср
)
+
αHrNr

hz

(
T − TH

ср
)
+

rNrf

2
; r = b; z = H.

T = T0 (r) ; z = 0; a ⩽ r ⩽ b. (4.40)

Точность полученного решения оценивалась путём сопоставления решения настоящей
задачи дли длине тела, во много раз больше его внешнего диаметра, с задачей в линейной
постановке при плоском деформированном состоянии, решение которой может быть
найдено аналитически. Выражение (4.32) записывается:

T ′′ +
1

r
T ′ = − qv

λT
.

Решение полученного уравнения с учётом приведённых ранее граничных условий на
поверхностях тела (4.34), имеет вид:

T = − qv
4λT

r2 + C1 ln r + C2,
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где коэффициенты C1 и C2 являются корнями системы уравнений(
αa ln a−

λT

a

)
C1 + αaC2 = αa

(
qva

2

4λT
+ T a

ср

)
− qva

2
;(

αb ln b−
λT

b

)
C1 + αbC2 = αb

(
qvb

2

4λT
+ T b

ср

)
+

qvb

2
.

Исходные данные поставленной задачи: a = 1.0м, b = 2.0м, T a
ср = 50 ◦C, T b

ср = 20 ◦C,
αa = 5 Вт

м2·◦C , αb = 35 Вт
м2·◦C , qv = 1.0 · 103 Втм3 . Решение получено на сетке 4 × 4 интервала и

представлено в таблице 4.5.

Таблица 4.5 — Сравнение результатов решения задачи численным и аналитическим методом при
учёте неоднородности материала и без

4.5.9 Напряжённо–деформированное состояние радиационно–теплового экрана

Назначение радиационно–теплового экрана — максимально возможное уменьшение
ионизирующего и тепловых полей, возникающих при работе реактора, на конструкции
защиты (усадка бетона, его деструкция, наличие дополнительных вынужденных
деформаций, возникновение неоднородности материала и т. д.). Место установки
экрана — за корпусом реактора. В настоящем разделе изучается НДС подобного
экрана под влиянием температурного поля. В настоящем параграфе рассматривается
определение напряжённо–деформированного состояния радиационно–теплового экрана,
обусловленного температурным воздействием.

Конструктивно, защита может быть рассмотрена как цилиндр, вертикально стоящий
на основании (см. рисунок 4.32); материал — жаростойкий железобетон [40, 46]. Система
охлаждения предусмотрена воздушная путем циркуляции воздуха (в том числе и
принудительной) в имеющихся зазорах между корпусом реактора, конструкцией тепловой
защиты и биологической защитой реактора.

С целью контроля достоверности полученных результатов, определение НДС
цилиндра произведено с использованием двух методов: ВРМ и МКЭ. Оба метода в полной
мере учитывают как наведённую, в результате наличия физических полей, неоднородность,
так и приближенные к реальным условия конструкции. Результаты расчёта, полученные
при помощи ВРМ и МКЭ, полностью согласуются между собой.
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Постановка задачи: Ra = 2м; Rb = 3м; H = 3м. Материал — бетон со следующими
физико-механическими параметрами: E = 0.2 · 105МПа; ν = 0.2; α = 0.1 · 10−4 град−1;
λT = 1.5Вт/(м ·℃).

Как и задачи расчёта полимерных материалов, настоящая задача решается в
несколько этапов:

1. Определение температурного поля по методике, приведённой в предыдущем
раздела. Разчёт производится при учёте коэффициента теплопроводности материала λT ,
как функции от температуры [128], и при наличии внутренних источников тепловыделений,
причиной которых является разогревающий эффект ионизирующего излучения [40].

В рамках настоящей диссертационной работы не стоит задача определения точного
вида функции Q (r, z) — интенсивности внутреннего тепловыделения под влиянием
ионизирующего излучения. Форма её записи заимствована из работы академика
В.И.Андреева [6, 102, 122]:

Q (r, z) = q0 + q1 exp [−δ (r − a)] · sin πz

H
, (4.41)

где q0, q1, δ — заданные постоянные величины.
Значения коэффициентов теплоотдачи α приняты согласно исследованиям [40]. Для

упрощения решения, изменение температуры циркулирующего воздухе по высоте цилиндра
имеет линейное распределения. Температурой воздуха на входе в канал составляет 30 ◦C;
на выходе 80 ◦C.

Рисунках 4.33 и 4.34 иллюстрируют графики принятой функции Q (r, z), а также
распределение температуры в толще цилиндра.

2. Определение физико–механических параметров материала, как функции
физических полей согласно [128].

3. Определение НДС защиты. Граничные условия имеют вид:
— жёсткая заделка нижней торца цилиндра

z = 0 : u = 0, w = 0;

— отсутствие механического давления на верхней торцовой и внешней поверхностях

a ⩽ r ⩽ b, z = H : σz = τrz = 0;

r = b, 0 ⩽ z ⩽ H : σr = τrz = 0;

— наличие давления на внутренней торцовой поверхности тела

r = a, 0 ⩽ z ⩽ H : σr = Pa;
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Результаты расчётов приведены на рисунках 4.36–4.47 (см. стр. 175–180). Разница
решений, полученных при помощи МКЭ и ВРМ, не превышает 1%.

Анализ графиков (см. рисунки 4.41 и 4.40) распределения радиального напряжения
показывает его общий незначительный уровень, не превышающий, в среднем, уровень
10МПа. Всплески напряжений на уровне h = 0м можно объяснить краевым эффектом
и могут быть опущены в дальнейшем. На рисунках 4.42–4.45 приведены окружные и
осевые напряжения с учётом и без учета возникновения неоднородности материала под
влиянием физических полей; графики по уровню напряжений, в целом, совпадают, но
существенно отличаются их характер распределения в толще цилиндра, что определяется
неоднородностью модуля упругости (рисунок 4.36) в задаче с учётом неоднородности. В
случае учёта неоднородности, уровень напряжений на внутренней и внешней поверхностях
тела оказывается ниже (до 25%), чем в однородной задаче. При этом в случае учёта
неоднородности, растягивающие напряжения возникают не только внешней, но и
на внутренней поверхностях цилиндра; что жизненно необходимо учитывать при
проектировании конструкции и назначении схем армирования. Уровень касательных
напряжений ожидаемо высок в заделке на уроне h = 0м и достигает значений до 60МПа.

Представленные исследования были опубликованы в следующих трудах [62, 81, 86,
158, 165, 168].

Рисунок 4.33 — Изменение внутренних источников теплоты в толще цилиндра
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Рисунок 4.34 — Изменение температуры в толще цилиндра

Рисунок 4.35 — Распределение флюенса нейтронов в толще цилиндра
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Рисунок 4.36 — Изменение модуля упругости в толще цилиндра

Рисунок 4.37 — Деформации εΦ в толще цилиндра, вызванные ионизирующим излучением
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Рисунок 4.38 — Деформации εT в толще цилиндра, вызванные изменением температуры

Рисунок 4.39 — Полные вынужденные деформации, εв = εΦ + εT
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Рисунок 4.40 — Изменение радиального напряжения σr толще цилиндра в случае E = f (r, z)

Рисунок 4.41 — Изменение радиального напряжения σr толще цилиндра в случае E = const
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Рисунок 4.42 — Изменение окружного напряжения σθ толще цилиндра в случае E = f (r, z)

Рисунок 4.43 — Изменение окружного напряжения σθ толще цилиндра в случае E = const
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Рисунок 4.44 — Изменение осевого напряжения σz толще цилиндра в случае E = f (r, z)

Рисунок 4.45 — Изменение осевого напряжения σz толще цилиндра в случае E = const
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Рисунок 4.46 — Изменение касательного напряжения τrz толще цилиндра в случае E = f (r, z)

Рисунок 4.47 — Изменение касательного напряжения τrz толще цилиндра в случае E = const
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4.6 Выводы по главе

1. Впервые получены зависимости физико-механических параметров материала
как функция от двух переменных на основании анализа и аппроксимации кривых его
релаксации в различных условиях.

2. Представлено на основе решения тестовой задачи, что несмотря на
значительное изменение свойств материала различными модификаторами, напряжённо-
деформированное состояние готового элемента конструкции меняется весьма
незначительно (напряжённое состояние изменяется в пределах 10%). В результате
чего судить об эксплуатационных параметрах материала или улучшении его показателей
практического применения без моделирования работы конкретной конструкции нельзя.

3. Доказано, что полноценно о напряжённо-деформированном состоянии конструкции
в процессе реологических явлений возможно судить только по главным напряжениям. То
же относится и к прогнозированию прочности изделий из полимерных материалов.

4. Представлено существенное влияние неоднородности материала на характер
распределения напряжений в теле путём численного моделирования теплового экрана под
действием температурного поля и ионизирующего излучения. Расчёты проведены двумя
численными методами: МКЭ и ВРМ. Разработан и численно реализован пакет программ
для программного комплекса Octave (MatLab). Результаты расчета с помощью МКЭ и
ВРМ совпали между собой с погрешностью менее 1%.

181



Глава 5. Задачи термовязкоупругости в двумерной постановке

5.1 Разрешающие соотношения в осесимметричной двумерной постановке

Рассмотрим цилиндр (рисунок 5.1), внутренний радиус которого Ra, внешний – Rb,
имеющий конечную длину l. Граничные условия, вследствие их большой вариации, будут
приведены далее в процессе выкладки разрешающих уравнений.

Рисунок 5.1 — Исходная схема двумерной осесимметричной задачи: а – исходный цилиндр;
б – конечный прямоугольный элемент

В случае двумерных задач конечный элемент может быть представлен в виде
четырёхугольника или, наиболее часто используемый вариант, треугольника. Далее при
рассмотрении сечения цилиндра будем изучать прямоугольный плоский конечный элемент
как наиболее удобный для данного класса осесимметричных задач.

5.1.1 Получение аппроксимирующей функции формы прямоугольного конечного
элемента

Интерполяционный полином запишем в виде выражения (рисунок 5.2):

φ = α1 + α2x+ α3y + α4xy. (5.1)

Необходимо отметить, что так как рассматривается прямоугольный элемент, то для
дальнейших выкладок можно сделать некоторые упрощения: Rl = Ri; Rj = Rk; Zj = Zi;
Zl = Zk.
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Рисунок 5.2 — Двумерный прямоугольный конечный элемент

Тогда условия в узлах записываются:

φ = Φi при x = Ri, y = Zi;

φ = Φj при x = Rk, y = Zi;

φ = Φk при x = Rk, y = Zk.

φ = Φl при x = Ri, y = Zk.

Тогда интерполяционный полином в матричном представлении имеет вид:
1 Ri Zi RiZi

1 Rk Zi RkZi

1 Rk Zk RkZk

1 Ri Zk RiZk



α1

α2

α3

α4

 =


Φi

Φj

Φk

Φl

 .

Для упрощения представления в дальнейшем результатов можно ввести замену:

A = (Rk −Ri) (Zk − Zi) , (5.2)

где A — фактически площадь прямоугольной грани конечного элемента.
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Тогда коэффициенты полинома (5.1) определяем так:
α1

α2

α3

α4

 =
1

A
·


RkZk −RiZk RiZi −RkZi

−Zk Zk −Zi Zi

−Rk Ri −Ri Rk

1 −1 1 −1



Φi

Φj

Φk

Φl

 .

Далее значения коэффициентов подставляем в выражение исходного полинома (5.1)
и приводим его виду

φ =
{
Ni Nj Nk Nl

}

Φi

Φj

Φk

Φl

 , (5.3)

где

Ni =
1

A
(RkZk − Zkx−Rky + xy) ;

Nj =
1

A
(−RiZk + Zkx+Riy − xy) ;

Nk =
1

A
(RiZi − Zix−Riy + xy) ;

Nl =
1

A
(−RkZi + Zix+Rky − xy) .

При минимизации выражения (5.3):

∂φ

∂x
=

{
∂Ni

∂x

∂Nj

∂x

∂Nk

∂x

∂Nl

∂x

}{
Φi Φj Φk Φl

}T

=

=
1

A

{
−Zk + y Zk − y −Zi + y Zi − y

}{
Φi Φj Φk Φl

}T

; (5.4)

∂φ

∂y
=

{
∂Ni

∂y

∂Nj

∂y

∂Nk

∂y

∂Nl

∂y

}{
Φi Φj Φk Φl

}T

=

=
1

A
·
{
−Rk + x Ri − x −Ri + x Rk − x

}{
Φi Φj Φk Φl

}T

. (5.5)

В случае осесимметричной задачи функция формы (5.3) и соответствующие её
производные (5.4) и (5.5) принимают вид:

φ =
{
Ni Nj Nk Nl

}

Φi

Φj

Φk

Φl

 , (5.6)
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где

Ni =
1

A
(RkZk − Zkr −Rkz + rz) ;

Nj =
1

A
(−RiZk + Zkr +Riz − rz) ;

Nk =
1

A
(RiZi − Zir −Riz + rz) ;

Nl =
1

A
(−RkZi + Zir +Rkz − rz) ;

∂φ

∂r
=

{
∂Ni

∂r

∂Nj

∂r

∂Nk

∂r

∂Nl

∂r

}{
Φi Φj Φk Φl

}T

=

=
1

A

{
−Zk + z Zk − z −Zi + z Zi − z

}{
Φi Φj Φk Φl

}T

; (5.7)

∂φ

∂z
=

{
∂Ni

∂z

∂Nj

∂z

∂Nk

∂z

∂Nl

∂z

}{
Φi Φj Φk Φl

}T

=

=
1

A

{
−Rk + r Ri − r −Ri + r Rk − r

}{
Φi Φj Φk Φl

}T

. (5.8)

5.1.2 Определение температурного поля

Для определения температурного поля используем уравнение теплопроводности
Фурье (1.15), которое во времени будем аппроксимировать согласно методике, приведённой
в параграфе (3.2.2.1) (см. стр. 100). Тогда уравнение Фурье можно записать в виде:

−div (λgradT ) = qT − ρc

ht

(Tϱ − Tϱ−1) , (5.9)

где ht — интервал времени между исследуемым моментом и предыдущим; Tϱ и Tϱ−1 —
температуры в узле элемента соответственно в текущий момент времени и в предыдущий.

Для возможности нахождения функционала с помощью выражения (1.21),
уравнение (5.9) приводим к виду (1.17):

−div (λgradT ) + ρc

ht

T = f, (5.10)

где f = qT +
ρc

ht

Tϱ−1.
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С учётом (1.21), функционал уравнения (5.10) запишем:

Im (T ) =
w
V

[
λ (gradT )2 + ρc

ht

T 2

]
dV +

w
Γ3

αT 2 dΓ−

− 2
w
Γ3

αT0T dΓ + 2
w
Γ2

QT dΓ − 2
w
V

fT dV. (5.11)

С учётом выражений, приведённых в приложении А.1:

gradT =

√(
∂T

∂r

)2

+

(
∂T

∂z

)2

.

Температуру и её градиент по элементу определяют согласно выражениям (5.6)–(5.8):

T = NT; ∂T

∂r
=

∂N
∂r
T; ∂T

∂z
=

∂N
∂z
T.

Тогда

T 2 = TTNTNT;
(
∂T

∂ξ

)2

= TT ∂N
∂ξ

T ∂N
∂ξ
T.

Далее с учётом правил минимизации (А.6) и (А.7) производим минимизацию
функционала по температуре:

∂ Im (T )

{T}
= 0 = 2

w
V

λ
∂N
∂r

T ∂N
∂r

{T} dV︸ ︷︷ ︸
SI

+2
w
V

λ
∂N
∂z

T ∂N
∂z

{T} dV︸ ︷︷ ︸
SII

+2
w
V

ρc

ht

NTN {T} dV︸ ︷︷ ︸
SIII

+

+ 2
w
Γ3

αNTNT dΓ︸ ︷︷ ︸
SIV

− 2
w
Γ3

αT0NT dΓ︸ ︷︷ ︸
SV

+2
w
Γ2

QNT dΓ︸ ︷︷ ︸
SVI

− 2
w
V

fNT dV︸ ︷︷ ︸
SVII

(5.12)

и выражение приводим к виду:
k
(T )
1,1 k

(T )
1,2 k

(T )
1,3 k

(T )
1,4

k
(T )
2,1 k

(T )
2,2 k

(T )
2,3 k

(T )
2,4

k
(T )
3,1 k

(T )
3,2 k

(T )
3,3 k

(T )
3,4

k
(T )
4,1 k

(T )
4,2 k

(T )
4,3 k

(T )
4,4


︸ ︷︷ ︸

k(T )

·


T

(T )
i

T
(T )
j

T
(T )
k

T
(T )
l

︸ ︷︷ ︸
T(T )

=


f
(T )
1

f
(T )
2

f
(T )
3

f
(T )
4

︸ ︷︷ ︸
f (T )

.

Для этого перегруппируем члены выражения (5.12) SI–SVII с последующим
интегрированием их членов:

k(T ) = SI + SII + SIII + SIV; f (T ) = −
(
SV + SVI + SVII

)
.
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После интегрирования слагаемые SI–SVII принимают вид:
слагаемое SI:

SI = 2

Zkw
Zi

Rkw
Ri

r

(
λ
∂N
∂r

T ∂N
∂r

)
dr dz =

λ (Rk +Ri) (Zk − Zi)

6 (Rk −Ri)
·


2 −2 −1 1

2 1 −1

2 −2

сим. 2

 ;

слагаемое SII:

SII = 2

Zkw
Zi

Rkw
Ri

r

(
λ
∂N
∂z

T ∂N
∂z

)
dr dz =

=
λ (Rk −Ri)

6 (Zk − Zi)


3Ri +Rk Ri +Rk −(Ri +Rk) −(3Ri +Rk)

Ri + 3Rk −(Ri + 3Rk) −(Ri +Rk)

Ri + 3Rk Ri +Rk

сим. 3Ri +Rk

 ;

слагаемое SIII:

SIII = 2

Zkw
Zi

Rkw
Ri

r

(
cρ

ht

NTN
)
dr dz =

=
cρA

36ht


2(3Ri +Rk) 2(Ri +Rk) Ri +Rk 3Ri +Rk

2(Ri + 3Rk) Ri + 3Rk Ri +Rk

2(Ri + 3Rk) 2(Ri +Rk)

сим. 2(3Ri +Rk)

 ;

Здесь и далее было дополнительно введено обозначение

A = (Ri−Rk)× (Zi− Zk)

— площадь сечения конечного элемента в осях r и z.
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слагаемое SIV на вертикальных и горизонтальных гранях:

SIVверт = 2

Zkw
Zi

rαNTN dz =

=
rα (r −Rk) (Zi − Zk)

3 (Ri −Rk)
2



2(Rk − r) 2(r −Ri) r −Ri Rk − r

−2(r −Ri)
2

r −Rk

−(r −Ri)
2

r −Rk

r −Ri

−2(r −Ri)
2

r −Rk

2(r −Ri)

сим. 2(Rk − r)


;

SIVгор = 2

Rkw
Ri

rαNTN dr;

SIVгор,(1,1) =
α (Ri −Rk)

6 (Zi − Zk)
2

[
−
(
(z − Zk)

2(3Ri +Rk)
)]

;

SIVгор,(1,2) = SIVгор,(2,1) =
α (Ri −Rk)

6 (Zi − Zk)
2

[
−
(
(z − Zk)

2(Ri +Rk)
)]

;

SIVгор,(1,3) = SIVгор,(3,1) = SIVгор,(4,2) = SIVгор,(2,4) =
α (Ri −Rk) (z − Zi)(z − Zk) (Ri +Rk)

6 (Zi − Zk)
2 ;

SIVгор,(1,4) = SIVгор,(4,1) =
α (Ri −Rk)

6 (Zi − Zk)
2 [((z − Zi)(z − Zk)(3Ri +Rk))] ;

SIVгор,(2,2) =
α (Ri −Rk)

6 (Zi − Zk)
2

[
−
(
(z − Zk)

2(Ri + 3Rk)
)]

;

SIVгор,(2,3) = SIVгор,(3,2) =
α (Ri −Rk)

6 (Zi − Zk)
2 [((z − Zi)(z − Zk)(Ri + 3Rk))] ;

SIVгор,(3,3) =
α (Ri −Rk)

6 (Zi − Zk)
2

[
−
(
(z − Zi)

2(Ri + 3Rk)
)]

;

SIVгор,(3,4) = SIVгор,(4,3) =
α (Ri −Rk)

6 (Zi − Zk)
2

[
−
(
(z − Zi)

2(Ri +Rk)
)]

;

SIVгор,(4,4) =
α (Ri −Rk)

6 (Zi − Zk)
2

[
−
(
(z − Zi)

2(3Ri +Rk)
)]

;

слагаемое SV на вертикальных и горизонтальных гранях:

SVверт = −2

Zkw
Zi

rαT0NT dz = −rαT0 (Zi − Zk)

(Ri −Rk)


Rk − r

r −Ri

r −Ri

Rk − r

 ;
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SVгориз = −2

Rkw
Ri

rαT0NT dr = αT0 (Ri −Rk)

3 (Zi − Zk)


(z − Zk)(2Ri +Rk)

(z − Zk)(Ri + 2Rk)

−(z − Zi)(Ri + 2Rk)

−(z − Zi)(2Ri +Rk)

 ;

слагаемое SVI на вертикальных и горизонтальных гранях:

SVIверт = 2

Zkw
Zi

rQNT dz =
rQ (Zi − Zk)

(Ri −Rk)


Rk − r

r −Ri

r −Ri

Rk − r

 ;

SVIгориз = 2

Rkw
Ri

rQNT dr = Q (Ri −Rk)

3 (Zi − Zk)


−(z − Zk)(2Ri +Rk)

−(z − Zk)(Ri + 2Rk)

(z − Zi)(Ri + 2Rk)

(z − Zi)(2Ri +Rk)

 ;

слагаемое SVII, где β =
ρc

ht

:

SVII = −2

Zkw
Zi

Rkw
Ri

r

(
qT +

cρ

ht

{Tϱ−1}
)
NT dr dz;

SVII1 = − A

36

[
6Ri(qi + βTϱ−1, i) + 2Ri(qj + βTϱ−1, j)+

+Ri(qk + βTϱ−1, k) + 2Rk(qi + βTϱ−1, i) + 3Ri(ql + βTϱ−1, l)+

+ 2Rk(qj + βTϱ−1, j) + Rk(qk + βTϱ−1, k) + Rk(ql + βTϱ−1, l)
]
;

SVII2 = − A

36

[
2Ri(qi + βTϱ−1, i) + 2Ri(qj + βTϱ−1, j)+

+Ri(qk + βTϱ−1, k) + 2Rk(qi + βTϱ−1, i) + Ri(ql + βTϱ−1, l)+

+ 6Rk(qj + βTϱ−1, j) + 3Rk(qk + βTϱ−1, k) + Rk(ql + βTϱ−1, l)
]
;

SVII3 = − A

36

[
Ri(qi + βTϱ−1, i) + Ri(qj + βTϱ−1, j)+

+ 2Ri(qk + βTϱ−1, k) + Rk(qi + βTϱ−1, i) + 2Ri(ql + βTϱ−1, l)+

+ 3Rk(qj + βTϱ−1, j) + 6Rk(qk + βTϱ−1, k) + 2Rk(ql + βTϱ−1, l)
]
;
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SVII4 = − A

36

[
3Ri(qi + βTϱ−1, i) + Ri(qj + βTϱ−1, j)+

+ 2Ri(qk + βTϱ−1, k) + Rk(qi + βTϱ−1, i) + 6Ri(ql + βTϱ−1, l)+

+Rk(qj + βTϱ−1, j) + 2Rk(qk + βTϱ−1, k) + Rk(ql + βTϱ−1, l)
]
.

5.1.3 Определение напряжённо-деформированного состояния

При решении двумерной осесимметричной задачи из шести компонент деформаций
(закон Гука в прямой форме (1.8), с. 20) остаётся четыре: εr, εθ, εz и γrz. При этом, как
говорилось ранее, в случае ПДС полная осевая деформация равна нулю:

εr

εθ

εz

εrz

︸ ︷︷ ︸
ε

=


1
E

− ν
E

− ν
E

0

− ν
E

1
E

− ν
E

0

− ν
E

− ν
E

1
E

0

0 0 0 1
G



σr

σθ

σz

τrz

︸ ︷︷ ︸
εel

+


1

1

1

0

 εT︸ ︷︷ ︸
εT

+


εcr, r

εcr, θ

εcr, z

γcr, rz

︸ ︷︷ ︸
εcr

,

откуда можно выразить вектор напряжений:
σr

σθ

σz

τrz

 =


1
E

− ν
E

− ν
E

0

− ν
E

1
E

− ν
E

0

− ν
E

− ν
E

1
E

0

0 0 0 1
G


−1

·



εr

εθ

εz

εrz

−


1

1

1

0

 εT −


εcr, r

εcr, θ

εcr, z

γcr, rz



 . (5.13)

Окончательно, в результате ряда алгебраических операций, вектор напряжений
определяем:

σr

σθ

σz

τrz

 =
Eν

(1 + ν)(1− 2ν)


1−ν
ν

1 1 0

1 1−ν
ν

1 0

1 1 1−ν
ν

0

0 0 0 1−2ν
2ν

×



εr

εθ

εz

εrz

−


1

1

1

0

 εT −


εcr, r

εcr, θ

εcr, z

γcr, rz



 . (5.14)

Введём замену

D =
Eν

(1 + ν)(1− 2ν)


1−ν
ν

1 1 0

1 1−ν
ν

1 0

1 1 1−ν
ν

0

0 0 0 1−2ν
2ν

 , (5.15)
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тогда выражение (5.14) принимает вид:


σr

σθ

σz

τrz

︸ ︷︷ ︸
σ

= [D] ·




εr

εθ

εz

εrz

︸ ︷︷ ︸
ε

−


1

1

1

0

 εT︸ ︷︷ ︸
εT

−


εcr, r

εcr, θ

εcr, z

γcr, rz

︸ ︷︷ ︸
εcr


. (5.16)

Или окончательно выражение (5.16) записывается:

σ = D (ε− εT − εcr) .

Полная энергия системы Э представляет собой разность между энергией упругой
деформации тела Π и работой внешних сил AW :

Э = Π− AW ,

где энергия упругой деформации тела записывается:

Π =
1

2

w
V

(σrεel, r + σθεel, θ + σzεel, z + τrzεel, rz) dV =
1

2

w
V

σT · εel dV, (5.17)

где σ = D (ε− εT − εcr); εel = ε− εT − εcr; dV = r dr dz.
Полная деформация {ε} определяется через выражения Коши (1.2):

ε =



∂u

∂r
u/r
∂w

∂z
∂u

∂z
+

∂w

∂r


.

Аппроксимация перемещений u по элементы описывается выражением (1.24):
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U =

{
u

w

}
=

[
Ni 0 Nj 0 Nk 0 Nl 0

0 Ni 0 Nj 0 Nk 0 Nl

]
×



ui

wi

uj

wj

uk

wk

ul

wl



,

следовательно, полная деформация определяется соотношениями (1.2):


εr

εθ

εz

γrz

︸ ︷︷ ︸
ε

=


∂Ni

∂r
0

∂Nj

∂r
0 ∂Nk

∂r
0 ∂Nl

∂r
0

Ni

r
0

Nj

r
0 Nk

r
0 Nl

r
0

0 ∂Ni

∂z
0

∂Nj

∂z
0 ∂Nk

∂z
0 ∂Nl

∂z
∂Ni

∂z
∂Ni

∂r

∂Nj

∂z

∂Nj

∂r
∂Nk

∂z
∂Nk

∂r
∂Nl

∂z
∂Nl

∂r


︸ ︷︷ ︸

B



ui

wi

uj

wj

uk

wk

ul

wl

︸ ︷︷ ︸
U

, (5.18)

Минимизируя потенциальную энергию упругой деформации (5.17) по перемещениям
U, получаем выражение:

∂Π

∂U =
w
V

BTDBU dV −
w
V

BTDεT dV −
w
V

BTDεcr dV = 0, (5.19)

где объём конечного элемента dV = r dr dz.
Следующим шагом выражение (5.19) приводим к виду:

KU = F,

где K — глобальные матрица жёсткости; F — глобальный вектор нагрузки, которые
определяются соотношениями

K =
E∑

e=1

k(e); F =
E∑

e=1

f (e).
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Здесь

k(e) =
Zkw
Zi

Rkw
Ri

rBTDB dr dz;

f (e) =
Zkw
Zi

Rkw
Ri

rBTDεT dr dz +
Zkw
Zi

Rkw
Ri

rBTDεcr dr dz.

В результате интегрирования матрица k(e) и вектор f (e) имеют структуру:

k(e) =



k
(e)
11 k

(e)
12 k

(e)
13 k

(e)
14 k

(e)
15 k

(e)
16 k

(e)
17 k

(e)
18

k
(e)
21 k

(e)
22 k

(e)
23 k

(e)
24 k

(e)
25 k

(e)
26 k

(e)
27 k

(e)
28

k
(e)
31 k

(e)
32 k

(e)
33 k

(e)
34 k

(e)
35 k

(e)
36 k

(e)
37 k

(e)
38

k
(e)
41 k

(e)
42 k

(e)
43 k

(e)
44 k

(e)
45 k

(e)
46 k

(e)
47 k

(e)
48

k
(e)
51 k

(e)
52 k

(e)
53 k

(e)
54 k

(e)
55 k

(e)
56 k

(e)
57 k

(e)
58

k
(e)
61 k

(e)
62 k

(e)
63 k

(e)
64 k

(e)
65 k

(e)
66 k

(e)
67 k

(e)
68

k
(e)
71 k

(e)
72 k

(e)
73 k

(e)
74 k

(e)
75 k

(e)
76 k

(e)
77 k

(e)
78

k
(e)
81 k

(e)
82 k

(e)
83 k

(e)
84 k

(e)
85 k

(e)
86 k

(e)
87 k

(e)
88


; (5.20)

f (e) =
{
f
(e)
1 f

(e)
2 f

(e)
3 f

(e)
4 f

(e)
5 f

(e)
6 f

(e)
7 f

(e)
8

}T

. (5.21)

При этом значения коэффициентов уравнения (5.20) симметричны относительно
главной диагонали, т. е.

k
(e)
ij = k

(e)
ji при i ̸= j,

или в полном виде

k(e) =



k
(e)
11 k

(e)
12 k

(e)
13 k

(e)
14 k

(e)
15 k

(e)
16 k

(e)
17 k

(e)
18

k
(e)
22 k

(e)
23 k

(e)
24 k

(e)
25 k

(e)
26 k

(e)
27 k

(e)
28

k
(e)
33 k

(e)
34 k

(e)
35 k

(e)
36 k

(e)
37 k

(e)
38

k
(e)
44 k

(e)
45 k

(e)
46 k

(e)
47 k

(e)
48

k
(e)
55 k

(e)
56 k

(e)
57 k

(e)
58

сим. k
(e)
66 k

(e)
67 k

(e)
68

k
(e)
78


. (5.22)

Значения членов матрицы k(e) и вектора f (e) приведены в приложении Б, на с. 279.

5.1.4 Проверка достоверности полученного решения

Оценка достоверности полученного аналитического решения может быть проведена
с соответствующим численным решением. Однако в этом случае произведём повышение
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точности 4-точечного шаблона, превратив его в 9-точечный с узлами i, j, k, l, m, n, o,
p, q (рисунок 5.3). При этом узлы m, n, p, q расположены на серединах ребер конечного
элемента, а узел o— на пересечении линий, соединяющих центры противоположных рёбер.

Рисунок 5.3 — 9-точечный уточнённый весовой шаблон

Использование многоточечного шаблона отличается от использования шаблона
обычного симплекс-элемента тем, что в симплекс-элементе значение функции определяется
в одной точке, как правило, в центре тяжести сечения, т. е. f = [N ] {Φ}. В случае 9-
точечного шаблона происходит суммирование значения функции, определённой в каждом
узле со своим «весовым» коэффициентом.

Согласно [142] численно интеграл может быть определён по формуле трапеций:
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a

f (x) dx ≈ 1

2

n∑
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(
y0 + y2

2
+ y1

)
, (5.23)

где hi = h = X1−X0 = X2−X1—шаг между узлами. В девятиточечном шаблоне расстояние
между узлами соответственно равно dr/2 и dz/2.

Определим «весовые» коэффициенты каждого узла девятиточечного шаблона, c
учётом, что drdz = dA:
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. (5.24)

Для оценки достоверности предложенной методики расчёта двумерной задачи
произведём вычисление задачи, рассмотренной ранее в параграфе 3.3.3, на стр. 111 и
параграфе 3.5, на стр. 122. Поскольку в указанных параграфах рассматривали задачи
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при плоском деформированном состоянии, то примем длину цилиндра двумерной задачи
равной 1м, по торцам раскрепив подвижными шарнирами в направлении оси z. В
такой постановке результаты расчёта двумерной задачи должны совпасть с результатами
решения задачи при плоском деформированном состоянии. Результаты расчёта приведены
в таблицах 5.1–5.4, в которых: Nr — количество конечных элементов по радиусу; Nz —
количество конечных элементов по высоте цилиндра; Nt — количество интервалов по
времени.

Первоначально сравнивают решения задач при постоянном шаге разбиения по
времени, полученные численно по 9-точечному шаблону, рассмотренному в настоящем
параграфе, и полученном численно-аналитически по коэффициентам, подробно
рассмотренным в параграфе 5.1.3 (таблица 5.1 и таблица 5.2). Результаты обоих решений
хорошо согласуются как между собой, так и с решением при плоском деформированном
состоянии. Однако численно-аналитическое решение более точное и позволяет получить
решение даже при малом количестве интервалов при времени Nt = 10шт. При этом
матрица численного решения 9-точечного шаблона вырождается, и решение не может
быть найдено.

Анализируя таблицы 5.1 и 5.2, делаем вывод, что результаты при уточнённом центре
тяжести конечного элемента хоть и практически совпадают с результатами, когда центр
тяжести конечного элемента принимается усреднённым по конечному элементу, но, тем
не менее, ближе к результатам одномерных задач, что говорит о большей точности этой
методики.

В таблицах 5.3 и 5.4 приводятся результаты решения задачи при помощи численно-
аналитического решения при переменном шаге: логарифмическом (таблица 5.3) и по
геометрической прогрессии (таблица 5.4). Наибольшую точность при этом имеет решение,
при котором интервалы времени делятся по геометрической прогрессии при отношении
величины последнего интервала к первому kg = 104.

При этом во всех случаях видно, что увеличение количества интервалов по высоте
цилиндра Nz никак не сказывается на точности полученного решения.
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Таблица 5.1 — Результаты расчёта двухмерной осесимметричной задачи при постоянном шаге во
времени, матрица жёсткости и вектор нагрузок получены численно; Nr — количество конечных
элементов по радиусу; Nz — количество конечных элементов по высоте цилиндра; Nt —
количество интервалов по времени
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Таблица 5.2 — Результаты расчёта двухмерной осесимметричной задачи при постоянном шаге во
времени, матрица жёсткости и вектор нагрузок получены численно-аналитически; Nr —
количество конечных элементов по радиусу; Nz — количество конечных элементов по высоте
цилиндра; Nt — количество интервалов по времени
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Таблица 5.3 — Результаты расчёта двухмерной осесимметричной задачи при логарифмическом
шаге во времени, матрица жёсткости и вектор нагрузок получены численно-аналитически; Nr —
количество конечных элементов по радиусу; Nz — количество конечных элементов по высоте
цилиндра; Nt — количество интервалов по времени
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Таблица 5.4 — Результаты расчёта двухмерной осесимметричной задачи при шаге во времени по
геометрической прогрессии, матрица жёсткости и вектор нагрузок получены
численно-аналитически; Nr — количество конечных элементов по радиусу; Nz — количество
конечных элементов по высоте цилиндра; Nt — количество интервалов по времени
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5.2 Определение напряжённо–деформированного состояния цилиндра, нахо-
дящимся под воздействием переменного температурного поля

5.2.1 Постановка задачи

Рассматривается выход полимерного цилиндра из сушильного аппарата. Материал
изделия — эпоксидная смола термического отверждения ЭДТ-10, термические и физико-
механические параметры материла приведены в параграфе 3.3.3.

Подобные задачи уже были рассмотрены в трудах [79, 160, 164], однако в них
граничные условия задавались в виде некоторой функции, без учёта теплового обмена
с окружающей средой.

Расчётная модель представлена на рисунке 5.4. Рассматривается три этапа:

Рисунок 5.4 — Расчётная модели вытяжки полимерного цилиндра (зелёный цвет) из экструдера
(серый цвет): а – исходный первоначальный момент времени; б – момент времени в пределах
времени вытяжки цилиндра; в – вытяжка завершена — полный контакт с окружающей средой

1. Начальный момент времени (рисунок 5.4, а). Образец находится в экструдере и
принимается, что вся его температура равна температуре самого экструдера.

2. Вытяжка цилиндра (рисунок 5.4, б и рисунок 5.5). Образец частично выведен из
цилиндра, на нижней гране и внешней гране, которая находится в экструдере, температура
равна температуре экструдера. На внутренней гране считается теплообмен в воздушным
слоем, температура которого также принята равной температуре экструдера. На верхней
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Рисунок 5.5 — Наглядная визуальная схема расчётной модели, изображённой на рисунке 5.4, б

грани и внешней грани, которая вышла из экструдера считается теплообмен с внешней
средой.

3. Остывание (рисунок 5.4, в). Образец извлечён из экструдера, на всех четырех
гранях считается теплообмен с воздушной средой.

Температура экструдера и температура воздушной среды внутри экструдера были
приняты 100 ◦C. Связано это с тем, что процесс отверждения эпоксидной смолы должен
проводиться при температурах 100–130 ◦C, однако, по скольку проводится механический
расчёт, то температура не должна превышать температуру стеклования ЭДТ-10, равную
порядка 102 ◦C. Температура внешней воздушной среды была принята 20 ◦C.

Размеры полимерного цилиндра приняты: Ra = 0.008м, Rb = 0.028м, h = 0.5м.
Механические нагрузки на всех торцах отсутствуют.

Полный расчётный период составил 3.6 ч. Были рассмотрены два режима, при
которых время выхода полимерного цилиндра из экструдера было принято 0.36 и 1.2 ч
соответственно. Общее количество интервалов времени составило ht = 100шт; количество
прямоугольных конечных элементов, аппроксимирующих полимерный цилиндр было
одинаково в вертикальной и радиальном направлениях и составило hr = hz = 51шт.

Расчёты выполнены с учётом зависимости всех физико-механических параметров
материала цилиндра от температуры в нелинеаризованной постановке.

5.2.2 Анализ результатов расчёта

Результаты расчёта представлены на рисунках 5.6–5.17 (стр. 204–215).
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Температурные поля выводятся для двух вариантов: для варианта выхода
полимерного центра из экструдера в течение 0.36 ч (рисунок 5.6) и в течение 1.2 ч
(рисунок 5.7). В обоих случаях первый рисунок соответствует моменту времени, когда
цилиндр вышел из экструдера наполовину (рисунки 5.6, а и 5.7, а), второй — в самый
момент полного выхода изделия (рисунки 5.6, б и 5.7, б). За счёт более медленного выхода
во втором случае полимерный цилиндр имеет больший перепад температур как в моменте
времени, соответствующему выходу половины цилиндра из экструдера (менее 70 ◦C в
первом случае и порядка 40 ◦C во втором), так и в момент времени, соответствующий
выходу всего цилиндра из экструдера (порядка 50 ◦C в первом случае и менее 30 ◦C
во втором); при этом максимально разогретые участки имеют температуру 100 ◦C.
Температурные поля в начальный и конечный расчётные моменты не приводятся, как
тривиальные.

В результате имеющегося градиента температурного поля, материал полимерного
цилиндра приобретает выраженную наведённую косвенную неоднородность в виде
разности физико-механических параметров (упругих и высокоэластических) в толщи тела
(рисунки 5.8 и 5.9 на стр. 206 и 207); во втором случае разброс физико-механических
параметров имеет более выраженный характер.

В процессе выхода материала из экструдера в теле возникают напряжения за
счёт возникновения наведённой неоднородности материала. Для первого режима поля
напряжений приведены на рисунках 5.10–5.12 (стр. 208–210); для второго режима — на
рисунках 5.13–5.15 (стр. 211–213). Анализ полей напряжений показывает, что они имеют
несколько разный характер своего распределения в толщи тела, но один порядок их
величин. Для удобства анализа изменения величин во времени, на каждом шаге расчёта
были определены максимальные и минимальные значения напряжений в теле, после
чего были построены графики их изменения, которые приведены на рисунках 5.16–5.17
(стр. 214–215). Максимальные растягивающие и максимальные сжимающие осевые
напряжений на всём расчётном периоде имеют уровень порядка 4МПа.

Анализ полученных данных показывает, что уровень возникающих напряжений
не зависит от времени вытяжки изделия, однако в теле возможно возникновение
напряжённого состояния достаточно высокого уровня, что может негативно сказаться
в случае последующей обработки изделия без возможности его остывания и выдержки
при обычных условиях. При остывании тела и его отстаивании в нормальных условия, за
счёт развития высокоэластических деформаций в полимере через несколько часов после
вытяжки цилиндра из экструдера, напряжения принимают величину, которой можно
пренебречь в последующей эксплуатации образца в обоих рассмотренных режимах.
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5.3 Выводы по главе

1. Впервые получены коэффициенты матрицы жесткости и вектора нагрузок,
учитывающие температурные деформации и деформации ползучести материала, путём
аналитического интегрирования заданной функции формы прямоугольного конечного
элемента.

2. Достоверность полученных коэффициентов доказана сравнением решения
одномерной задачи с двумерной, искусственно приведённой к плоскому деформированному
состоянию.

3. Доказана эффективности применения переменного шага по времени и уточнённого
положения центра тяжести конечного элемента по сравнению с «классическим»
усреднённым по координатам узлов.

4. В результате предложенных оптимизационных подходов достигается лучшая
точность определения напряжённо-деформированного состояния тел с учётом наличия
температурного поля и деформаций ползучести материала.

5. Решена практически важная задача определения напряжённо-деформированного
состояния полимерного тела при его вытяжки из экструдера с последующим контактом с
окружающей средой. Разность температур создаёт косвенную неоднородность материала
тела, приводящую к возникновению внутренних напряжений.
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Рисунок 5.6 — Распределение температурного поля при длительности второго этапа 0.36 ч: а — в
середине второго этапа; б — в конце второго этапа
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Рисунок 5.7 — Распределение температурного поля при длительности второго этапа 1.2 ч: а — в
середине второго этапа; б — в конце второго этапа
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Рисунок 5.8 — Распределение физико-механических параметров в толщи цилиндра при варианте
извлечения цилиндра в течение 0.36 ч в конце этого периода: а — модуль упругости E, МПа;
б — модуль высокоэластичесности E∞, МПа; в — модуль скорости m∗, МПа; г — коэффициент

начальной релаксационной вязкости η∗0, МПа · ч
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Рисунок 5.9 — Распределение физико-механических параметров в толщи цилиндра при варианте
извлечения цилиндра в течение 1.2 ч в конце этого периода: а — модуль упругости E, МПа;

б — модуль высокоэластичесности E∞, МПа; в — модуль скорости m∗, МПа; г — коэффициент
начальной релаксационной вязкости η∗0, МПа · ч
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Рисунок 5.10 — Распределение осевых и касательных напряжений при варианте извлечения
цилиндра в течение 0.36 ч в середине этого периода
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Рисунок 5.11 — Распределение осевых и касательных напряжений при варианте извлечения
цилиндра в течение 0.36 ч в конце этого периода
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Рисунок 5.12 — Распределение осевых и касательных напряжений при варианте извлечения
цилиндра в течение 0.36 ч в конце расчётного периода
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Рисунок 5.13 — Распределение осевых и касательных напряжений при варианте извлечения
цилиндра в течение 1.2 ч в середине этого периода
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Рисунок 5.14 — Распределение осевых и касательных напряжений при варианте извлечения
цилиндра в течение 1.2 ч в конце этого периода
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Рисунок 5.15 — Распределение осевых и касательных напряжений при варианте извлечения
цилиндра в течение 0.36 ч в конце расчётного периода
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Рисунок 5.16 — Изменение максимальных и минимальных напряжений в толще полимерного
цилиндра при времени извлечения тела из экструдера в течение 0.36 ч
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Рисунок 5.17 — Изменение максимальных и минимальных напряжений в толще полимерного
цилиндра при времени извлечения тела из экструдера в течение 1.2 ч
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Глава 6. Расчёт адгезионного соединения
Многие задачи расчёта строительных конструкций связаны с дощатоклееными

изделиями, или с исследованиями элементов конструкций, в которых присутствует
адгезионное соединение в том или ином виде. При этом оценка прочности конструкции
производится зачастую без учёта свойств клеевого слоя. Толщина слоя адгезина
несравненно меньше габарита всей конструкции, однако в нём могут развиваться довольно
значительные деформации ползучести, которые в течение длительного периода времени
могут приводить к разрушению конструкции при интенсивности нагрузок гораздо ниже
тех, при которых конструкция может работать в случае условно мгновенного нагружения,
или к релаксации напряжений, тем самым положительно сказываясь на работе всей
конструкции в целом.

Литературный обзор показал, что исследования прочности адгезионного соединения
проводились как в XXвеке [190, 204], так вопрос остался весьма актуальным
в настоящее время [66, 95, 115, 145, 146, 232]. Среди отечественных учёных
данным вопросом активно занимались в федеральном исследовательском центре
химической физики им.Н.Н.Семёнова РАН профессор А.С.Фрейдин и профессор
Р.А.Турусов [137, 139, 138, 144].

В своих исследованиях проф. А.С.Фрейдин и проф. Р.А.Турусов использовали
метод пограничного слоя, который позволяет свести задачу оценки длительной прочности
адгезионного слоя к неоднородному дифференциальному уравнению второго порядка
относительно касательных напряжений, возникающих на стыке адгезива и субстрата, что
позволяло получить его решений на электронно–вычислительных машинах тех годов.
Однако этот метод предполагает некоторые упрощения, которые могут значительно
сказать длительной прочности адгезионного соединения: использование предположение
линейного распределения касательных напряжений по высоте слоя, некоторое усреднение
физико–механических параметров и т. д.

В настоящей главе производится усовершенствование методики оценки длительной
прочности адгезионного соединения в использованием двумерной конечно–элементной
модели, полученной в главе 5, с учётом предложенных ранее всех оптимизационных
подходов.
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6.1 Метод пограничного слоя для решения задачи о длительной прочности
адгезионного соединения при нормальном отрыве

6.1.1 Постановка задачи

В своей книге А.С.Фрейдин и Р.А.Турусов [144] исследовали прочность двух
склеенных дисков при растягивающем усилии, приложенном вдоль их продольных осей
(нормальный отрыв, см. рисунок 6.1).

Рисунок 6.1 — Расчетная схема на нормальный отрыв двух дисков при использовании метода
пограничного слоя

Определение пограничного слоя впервые было предложено Прандтлем в начале
XX века и предполагает наличие некоторого слоя в точках соприкосновения субстрата
с адгезивом, в котором происходит основной процесс адгезии, при этом свойства
пограничного слоя отличаются от таковых свойств адгезива во всём его массиве. Подробное
описание пограничного слоя также приведено в трудах Р.А.Турусова [137, 141, 144], а
примеры использования этого метода для решения задач прочности адгезионного
соединения — в трудах [137, 7, 140, 179].

В основе мотода пограничного слоя лежат приведённые ранее основные уравнения
МДТТ с учётом, что в направлении осей θ и z свойства материала и НДС не изменяется,
т. е. ∂/∂θ = 0 и ∂/∂z = 0.

a) составляющая уравнений равновесия (1.1):

∂σr

∂r
+
σr − σθ

r
+

∂τrz
∂z

= 0. (6.1)
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б) уравнение совместности деформаций (1.4):

∂εθ
∂r

+
εθ − εr

r
= 0. (6.2)

в) физические уравнения на основе (1.5):

{
εr

εθ

}
︸ ︷︷ ︸

ε

=
1

E

[
1 −ν −ν
−ν 1 −ν

]
σr

σθ

σz

︸ ︷︷ ︸
εel

+

{
1

1

}
(εT + εус) +

{
εcr,r

εcr,θ

}
︸ ︷︷ ︸

εвын

(6.3)

В выражении (6.3) вынужденные деформации представлены не только температурной
компонентой εT и деформациями ползучести εcr, но и значением относительной продольной
деформации химической усадки полимера εус.

В своих исследования проф. А.С̇.Ф̇рейдин и Р.А.Турусов, как правило, в качестве
субстрата рассматривали металлы, следовательно, деформации ползучести в этом случае
не рассматриваются для них. Тогда в этих исследованиях составлялась система уравнений,
которая может быть представлена в виде:



∂
∂r

+ 1
r

0 −1
r

0 1
h0

0 ∂
∂r

+ 1
r

0 −1
r

− 1
h̄1

1+ν0
r

+ ν0∂
r

0 −1+ν0
r

− ν0∂
r

0 0

0 1+ν0
r

+ ν0∂
r

0 −1+ν0
r

− ν0∂
r

0

− 1
E1

ν1
E1

1
E0

− ν0
E0

h∗

G
1
r




σr0

σr1

σθ0

σθ1

τ

 =

=



0

0

0

E1

[
εcr,r1 − εcr,θ1

r
−

∂εcr,θ1

∂r

]

−q

(
ν1

E1

−
ν0

E0

)
+ (εt,1 − εt,0) + (εc,1 − εc,0) + εcr,θ1


. (6.4)

В приведённой системе (6.4) использована следующая цифровая индексация: «0» —
элементы субстрата; «1» — элементы пограничного слоя; h̄1 = h1/2 — половинная высота
пограничного слоя; h∗ = h1 = h2 — высота пограничного слоя; τ = τ1 = −τ2 — касательные
напряжения в пограничных слоях.

Как говорилось ранее, одной из используемых гипотез является линейное
распределение по высоте в пограничных слоях и субстрате касательного напряжения, на
основе чего были получены первые две строки в системе (6.4).
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Путём подстановки выражения полной относительной деформации (6.3) в уравнения
совместности деформация (6.2) с учётом, что вертикальная составляющая напряжения σz

является величиной постоянной и равна интенсивности нагружения q, т./.е. σz = q = const,
получают третью и четвёртую строки выражения (6.4) соответственно.

Согласно уравнениям Коши в цилиндрической системе координат (1.2) εθ = u/r; на
стыке субстрата и пограничного слоя возникает их взаимное перемещение в радиальном
направлении ∆u, значение которого может быть определено ∆εθ · r. Отношение значения
взаимного сдвига слоёв ∆u к его толщине равно относительному углу сдвига γrz, или

τ = Gγel,rz

На основании представленной зависимости касательного напряжения и его связи
через взаимный сдвиг с окружными напряжениями εθ и была получена пятая строка
выражения (6.4), которая может быть записана несколько в иной форме:

τ = G
1

h∗ r

[
σθ1 − ν1σr1

E1

− σθ0 − ν0σr0

E0

−

− q

(
ν1

E1

− ν0

E0

)
+ (εT,1 − εT,0) + (εc,1 − εc,0) + εcr,θ1

]
= Gγel,rz. (6.5)

С другой стороны относительная упругая компонента деформации сдвига равна
разности полной деформации сдвига и сдвиговой деформацией ползучести

γel,rz = γrz − γcr,rz → τ

G
= γrz − γcr,rz → τ = G (γrz − γcr,rz) .

С учётом (6.5) получаем:

τ = G

[
r

h∗

(
σθ1 − ν1σr1

E1

− σθ0 − ν0σr0

E0

−

− q

(
ν1

E1

− ν0

E0

)
+ (εt,1 − εt,0) + (εc,1 − εc,0) + ε∗θ1

)
− γ∗

rz

]
. (6.6)

Разрешающее уравнение может быть получено при совместном рассмотрении первых
четырёх строк из системы (6.4) с заменой пятой строки выражением (6.6).

6.1.2 Вывод разрешающих уравнений

Для удобства дальнейшей работы с системой уравнений удобно произвести замену
разности напряжений при помощи переменных:
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

σr0 − σθ0 = ζ0;

σr1 − σθ1 = ζ1;

σθ0 − ν0σr0 = ψ0;

σθ1 − ν1σr1 = ψ1.

(6.7)

С учётом введённых переменных (6.7) значения окружных и радиальных напряжений
могут быть записаны: 

σr0 =
ζ0 +ψ0

1− ν0
;

σr1 =
ζ1 +ψ1

1− ν1
;

σθ0 =
ψ0 + ν0ζ0
1− ν0

;

σθ1 =
ψ1 + ν1ζ1
1− ν1

.

(6.8)

Также удобно ввести замену переменных для правой части выражения (6.4):

ϖ(r, t) = −q

(
ν1

E1

− ν0

E0

)
+ (εT,1 − εT,0) + (εc,1 − εc,0) + εcr,θ1 −

h∗

r
γcr,rz;

χ(r, t) = E1

[
εcr,r1 − εcr,θ1

r
− ∂εcr,θ1

∂r

]
,

(6.9)

следовательно, третья и четвертая строки в системе (6.4) могут быть переписаны:
ψ′

0 =
1 + ν0

r
ζ0;

ψ′
1 =

1 + ν1
r

ζ1 + χ(r, t),
(6.10)

где штрих «′» обозначает первую производную по координате r. Следовательно строки №1
и №2 в системе (6.4) запишутся

1

1− ν0
(ζ′0 +ψ

′
0) +

ζ0

r
+
τ

h0

= 0;

1

1− ν1
(ζ′1 +ψ

′
1) +

ζ1

r
− τ

h̄1

= 0.

(6.11)

Из уравнений (6.10) подставим значения ψ′
0 и ψ′

1 в (6.11):

(
r2ζ0

)′
= −(1− ν0) r2

h0

τ; (6.12)(
r2ζ1

)′
=

(1− ν1) r2

h̄1

τ− χ(r, t)r2. (6.13)
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Выражение для касательных напряжений (6.6) переписывается:

h∗

G

τ

r
=
ψ1

E1

− ψ0

E0

+ϖ(r, t). (6.14)

На следующем шаге необходимо найти производную полученного выражения (6.14)
по координате r:

h∗

G

(τ
r

)′
=
ψ′

1

E1

− ψ′
0

E0

+ϖ′(r, t) =
1 + ν1
rE1

ζ1 −
1 + ν0
rE0

ζ0 +
χ(r, t)

E1

+ϖ′(r, t). (6.15)

Полученное выражение (6.15) умножается на произведение параметров r3G/h∗,
после чего повторно берётся производная по координате r. Результатом проведённых
манипуляций является получение разрешающего уравнения относительно касательного
напряжения τ:

∂2τ

∂r2
+

1

r

∂τ

∂r
− τ

(
1

r2
+ c2

)
=

G

h∗
1

r2
∂

∂r

[
r2 (εcr,r1 − εcr,θ1)

]
−

− G

h∗
χ(r, t)(1 + ν1)

E1

−G

(
∂2γcr,rz

∂r2
+

1

r

∂γcr,rz

∂r
− γcr,rz

r2

)
︸ ︷︷ ︸

слагаемые отсутствуют в работах других авторов

, (6.16)

где для упрощения дополнительно введена замена

c2 =
G

h∗

(
1− ν21
E1h̄1

+
1− ν20
E0h0

)
.

В совместной работе проф. А.С.Фрейдина и проф. Р.А.Турусова [144] отсутствуют
слагаемые, помеченные ранее в выражении (6.16), поскольку в используемой ими теории
пограничного слоя отсутствуют сдвиговые деформации ползучести в самом пограничном
слое.

Далее производится работа с граничными условиями. Поскольку задача
рассматривается в осесимметричной постановке, то в координате r = 0 априори
отсутствуют сдвиговые касательные напряжения τ = 0. Граничные условия для
нормальных напряжений могут сформулированы следующим образом:

при r = 0 : σr0 = σθ0, σr1 = σθ1;

при r = R : σr0 = 0, σr1 = 0.
(6.17)

Для решения уравнения (6.16) относительно касательных напряжений τ

дополнительно необходимо получить второе граничное условие. Сделать это можно
работой с уравнением (6.13) путём выражения τ через ζ1 с последующей подстановкой
в (6.12):
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(
r2ζ0

)′
= −1− ν0

1− ν1
h̄1

h0

(
r2ζ1

)′ − h̄1

h0

1− ν0
1− ν1

χ(r, t)r2. (6.18)

Выполняется интегрирование выражения (6.18) в пределах от 0 до r:

r2ζ0 = −1− ν0
1− ν1

h̄1

h0

[
r2ζ1 +

rw
0

χ(r, t)r2 dr
]
+ F (t). (6.19)

Рассматриваются пределы интегрирования по отдельности. На оси дела в координате
r = 0 переменные ζ также стремятся к нулю: ζ0 → 0, ζ1 → 0, следовательно, F (t) = 0. При
достижении края диска r = R выражение (6.19) записывается:

ζ0 = −1− ν0
1− ν1

h̄1

h0

ζ1 −
1− ν0
1− ν1

h̄1

h0

κ(R, t), (6.20)

где κ(R, t) =
1

R2

Rr
0

χ(r, t)r2 dr.
Граничные условия (6.17) на краю диска r = R запишутся:{

ζ0 +ψ0 = 0;

ζ1 +ψ1 = 0.
(6.21)

Совместный учёт полученных выражений (6.21), (6.14), (6.20) и (6.15) с последующим
рядом алгебраических операция приводит к формированию граничного условия на краю
диска r = R:

ιτ′ + (1− ι) τ
R

=
G

h∗

(
ϖ(R)− f(R, t) + ιR

[
χ(R)

E1

+ϖ′(R)

]
+ ι(1 + ν0)f(R, t)

)
, (6.22)

где ι = G

h∗c2

(
1− ν1
h̄1E1

+
1− ν0
h0E0

)
, f(R, t) =

(1− ν0)h̄1

E0(1− ν1)h0

κ(R, t).
Полученное выражение (6.22) полностью согласуется в таковым из работы [144] за

исключением поправки f(R, t).

6.1.3 Методика расчёта

В силу сложности основного разрешающего уравнения относительно касательных
напряжений τ (6.16) получить его решение аналитически не представляется возможным,
однако его вид удобен для поиска решения при помощи МКР. При этом, как и ранее в
диссертационной работе, полное время исследования представляется массивом отдельных
шагов, на которых решается задача в квазистатической постановке. Проведя решение
уравнения (6.16) и найдя распределение касательных напряжений в пограничном слое на
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очередном шаге времени появляется возможность определить функции ζ1 и ψ1 при помощи
выражений (6.13) и (6.10):

r2ζ1 =

rw
0

(
1− ν1
h̄1

τ(t)− χ(t, t)
)
t2 dV + C1; (6.23)

ψ1 =

rw
0

[
(1 + ν1)

ζ1(r)

r
dV + χ(r, t)

]
dV + C2. (6.24)

Далее производится подстановка координаты r = 0 в выражение (6.23), в результате
чего определяют, что C1 = 0. Вторая константа C2 может быть найдена при помощи второго
условия в выражении (6.21):

ψ1(R) + ζ1(R) = 0 → C2 = −
Rw
0

[
(1 + ν1)

ζ1(r)

r
dr + χ(r, t)

]
dr − ζ1(R). (6.25)

Поскольку основное решение основного уравнения производится при помощи МКР, то
и интегрирование в формулах (6.23)–(6.25) выполняется численно.

6.1.4 Результаты и обсуждение

Произведён расчёт изменения касательных напряжений с течением времен для
следующей модели адгезионного соединения:

Субстрат = сталь;
Адгезив = эпоксидное связующее ЭДТ–10;
R = 0.012м;
E0 = 2 · 105МПа;
E1 = 2685МПа;
h0 = 0.0012м;
ν0 = 0.33;

ν1 = 0.37;

G

h∗ = 9.6 · 106 МПам .

В связи с тем, что общий рассматриваемый период времени развития деформаций
ползучести весьма большой (превышает 100 суток), деформацию ползучести в уравнении
Максвелла–Гуревича надо представлять в виде суммы ряда спектров времён релаксации
s, общее количество которых, как правило, не превышает двух (s = 2) при моделировании
практических задач. При этом первый спектр, старший, активно проявляет себя на
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коротких промежутках времени, но затухает на длительных, а второй, младший,
наоборот, активно развивается на длительных периодах времени:

εcr,ij =
n∑

s=1

εcr,ij,s, i = r, θ, z. (6.26)

Следовательно, скорость изменения деформаций ползучести для каждого спектра
времён релаксации полимера описывается зависимостью:

∂εcr,ij,s
∂t

=
f ∗
ij,s

η∗s
, (6.27)

где функция напряжений f ∗
ij,s и коэффициент релаксационной вязкости η∗s в случае

нескольких спектров времён релаксации определяются:

f ∗
ij,s =

3

2
(σij − pδij)− E∞,sεcr,ij,s;

η∗s =
η0,s

exp
{[

3

2
(σpp − p)− E∞,sεcr,pp,s

]
max

/
m∗

s

} , где p =
σr + σθ + σz

3
. (6.28)

Здесь, как и ранее, индексация p используется для обозначения главных напряжений;
γcr,rz = 2εcr,rz.

Значения физико–механических параметров полимера, входящих в уравнение
Максвелла–Гуревича, приняты следующие:

E∞ =2310МПа;
m∗ =4.44МПа;
η0 =8.95 · 109МПа · ч.

Результаты расчёта изменения интенсивности касательных напряжений τ,
возникающих в пограничном слое на краю диска (r = R) представлены на рисунке 6.2.
В моделе к поверхностям субстрата приложено растягивающее усилие интенсивностью
q = 10МПа. Проведённое моделирование показывает, что рост интенсивности касательных
напряжений асимптотически приближается к некоторому конечному значению с течением
времени. Так, в начальный момент времени t = 0 интенсивность касательных напряжений
составляет у края диска 2.34МПа, а в момент времени t = 2000 ч — возрастает до
2.94МПа.

Провести контроль достоверности полученных результатов возможно на основе
анализа уравнений (6.26)–(6.28) при времени стремящемся к бесконечно большому
значению (t → ∞). В этом случае скорость изменения скорости ползучести (6.27)
бесконечно приближается к нулю (∂εcr,ij,s/∂t ≈ 0), коэффициент релаксационной вязкости
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Рисунок 6.2 — Задача расчёта адгезионного соединения на нормальный отрыв: изменение
интенсивности касательных напряжений с течением времени в пограничном слое у края диска

r = R

η∗s изменяется в некотором определённом диапазоне значений, следовательно, нулю
равняется функция напряжений f ∗

ij,s, тогда из (6.28) следует:

(
f ∗
ij

)
s
= 0 → 3

2
(σij − pδij)− E∞s (εcr,ij)s = 0. (6.29)

Откуда составляющую относительной продольной деформации ползучести в пределе
t → ∞ возможно выразить:

εcr,r,s

εcr,θ,s

εcr,z,s

εcr,rz,s

 =
1

2E∞,s


2 −1 −1 0

−1 2 −1 0

−1 −1 2 0

0 0 0 3



σr

σθ

σz

τrz

 . (6.30)

В случае отсутствия температурного градиента (температура тела в каждой его точке
является величиной постоянной T = const) продольный относительными температурными
деформациями правомерно пренебречь, полные относительные продольные деформации
могут быть записаны в момент времени t → ∞:

225




εr

εθ

εz

εrz

 =
1

E


1 −ν −ν 0

−ν 1 −ν 0

−ν −ν 1 0

0 0 0 2(1 + ν)


︸ ︷︷ ︸

A1


σr

σθ

σz

τrz

+

+
n∑

s=1

1

E∞s


1 −1/2 −1/2 0

−1/2 2 −1/2 0

−1/2 −1/2 2 0

0 0 0 3


︸ ︷︷ ︸

A2


σr

σθ

σz

τrz

 = (A1 +A2)


σr

σθ

σz

τrz

 . (6.31)

Производится замена переменных:

α∗ =
1

E
+

n∑
s=1

1

E∞s

; β∗ =
ν

E
+

1

2

n∑
s=1

1

E∞s

,

в результате чего система (6.31) принимает вид:
εr

εθ

εz

εrz

 =


α∗ −β∗ −β∗ 0

−β∗ α∗ −β∗ 0

−β∗ −β∗ α∗ 0

0 0 0 2(α∗ + β∗)



σr

σθ

σz

τrz

 . (6.32)

Аналогично выражениям (4.11) вводятся длительный модуль упругости Ẽ = 1/α∗ и
длительный коэффициент Пуассона ν̃ = β∗/α∗. Окончательно система (6.32) записывается
в виде: 

εr

εθ

εz

εrz

 =
1

Ẽ


1 ν̃ ν̃ 0

ν̃ 1 ν̃ 0

ν̃ ν̃ 1 0

0 0 0 2(1 + ν̃)



σr

σθ

σz

τrz

 (6.33)

Результаты расчёта интенсивности касательного напряжения при помощи учёта
длительного модуля упругости Ẽ и длительного коэффициента Пуассона ν̃ в системе (6.33)
в моменты времени t = 0 и t = ∞ представлены на рисунке 6.3. Предельное значение
касательных напряжений составило 2.96МПа при t → ∞, что незначительно отличается
от значения 2.94МПа, полученного ранее в момент времени t = 2000 ч.

Проведённое сравнение полученных результатов решения представленной модели
адгезионного соединения при помощи пограничного слоя с решением, полученным
проф. А.С.Фрейдиным и проф. Р.А.Турусовым показало значительно отличие, которое
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Рисунок 6.3 — Интенсивность касательных напряжений в пограничном слое в моменты времени
t = 0 и t → ∞

заключается в том, что учёт в настоящей работе развития сдвиговых деформаций
ползучести приводит к тому, что интенсивность касательных напряжений с течением
времени приближается к некоторому конечному значению, а не достигает предельных
значений с последующим к разрушением изделия.

Проведено моделирование изменение максимального значения интенсивности
касательного напряжения при различных уровнях усилий, приложенных вдоль оси к
субстрату. На рисунке 6.4 представлены результаты расчёта модельных задач при уровнях
нагружения q = 10, 20 и 30МПа.

Отличие от работ [137, 139, 138, 144] ещё заключается в том, что в указанных выше
трудах моделирование проводилось при уровне нагружения q = 70МПа и теоретическое
время разрушения адгезионного соединения наступало в момент времени порядка
t = 2 года. Из представленных на рисунке 6.4 графиков видно, что учёт сдвиговых
деформаций ползучести приводит как к росту скорости роста деформаций ползучести,
так и их значений по сравнению с упругой компонентой, что приводит к разрушению
изделия при меньших уровнях растягивающего нагружения. Особенно это ярко видно
при сравнении растягивающих усилий q = 10МПа и q = 30МПа, где в первом случае
интенсивность касательных напряжений на всём рассматриваемом интервале времени
изменяется незначительно, то во втором случае учёт неустановившейся ползучести,
являющейся отличительной чертой полимеров, приводит к 50% изменению интенсивности
напряжения. Если же рассматривать интенсивность нагружения q = 40МПа, то скорость
роста деформаций ползучести и их значения возрастают на столько, что разрушение
адгезионного соединения в моделируемом изделии должно произойти в очень короткие
периоды времени, практически моментально.
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Рисунок 6.4 — Изменение касательных напряжений в адгезионном соединении при различных
уровнях нагружений (уточнённый метод пограничного слоя)

6.2 Решение задачи при помощи метода конечных элементов

В настоящем параграфе рассматривается задача определения НДС адгезионного
соединения в двумерной постановке, при которой субстрат и адгезив моделируются
массивом прямоугольных конечных элементов, полученных ранее в разделе 5.1.3
(постановка задачи и расчётная схема приведены на рисунке 6.5). Результаты определения
НДС позволяют сути о длительной прочности адгезионного соединения системы
«субстрат–адгезив». Как таковой пограничный слой в данной постановке отсутствует,
однако, аналогичное поведение демонстрирует ближайший к субстрату слой адгезива,
в котором наибольшая интенсивность касательных напряжений возникает в конечном
элементе на краю диска (условно представлен красным цветом на рисунке 6.5, б).
«Верхняя» и «нижняя» части модели одинаковые, поэто относительно оси симметрии
рассматривается только «нижняя» её часть. Создан алгоритм определения НДС по
представленной модели реализован в виде пакета прикладных программ, получено
свидетельство о государственной регистрации программы для ЭВМ [94].

Исходная условия задачи следующие:
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Рисунок 6.5 — Модели адгезионного соединения на нормальный отрыв для исследования
длительной прочности: а — постановка задачи; б — расчётная схема

Субстрат — стальные диски толщиной 0.0012м;
Адгезив — сетчатый полимер — эпоксидная связующее ЭДТ–10, состав КДА / ТЭАТ /

Спирт / Ацетон в соотношениях 50/5/30/15.
Для возможности сопоставления полученных далее результатов решений модельных

задач с таковыми в работах проф. А.С.Фрейдина и проф. Р.А.Турусова, физико–
механические параметры адгезива и субстрата приняты такими же, как в трудах [16, 137]:
Субстрат

E(T ) = const = 0.7 · 105 [МПа];
ν(T ) = const = 0.33,

Адгезив:

E(T ) = −18.2TK + 8200 [МПа];

E∞1(T ) =


2.4 · 106

TK

− 6120 [МПа] для TK < 370K;

2.23TK − 640 [МПа] для TK ≥ 370K;
E∞2(T ) = 0.1E∞1(T );

m∗
1(T ) = m∗

2(T ) = −0.0155TK + 7.73 [МПа];

η∗01(T ) = 36 000 exp
(
9 500

TK

− 20

)
[МПа · с];

η∗02(T ) = 36 000 exp
(
35 400

TK

− 90

)
[МПа · с];

ν(T ) = const = 0.37,

где в приведённых выше выражениях TK — температура в градусах Кельвина:
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Аналогично приведённым ранее выражения компоненты ползучести (6.26), она
представляется двумя спектрами времён релаксации полимера: «старшим» εcr,I и
«младшим» εcr,II:

εcr = εcr,I + εcr,II.

Остальные параметры модели:
— температура субстрата и адгезива является постоянной по всей толщине и высоте

системы «субстрат–адгезив–субстрат» и составляет T = 30 ◦C;
— радиус дисков R = 0.012м;
— высота субстрата h = 0.0012м;
— половина высоты адгезива h∗/2 = 0.09 · 10−3 м;
— весь интервал времени разделён на различные по продолжительности участки

общим количеством Nt = 250шт, следовательно, количество узлов времени составляет
Nt + 1 = 251шт;

— значение момента времени в последнем узле tNt+1 = 308 сут;
— распределение продолжительности интервалов времени выполнено согласно

геометрической прогрессии (вначале периода времени расположены интервалы времени
с наименьшей длительностью, в конце — с наибольшей), где продолжительность
последнего интервала времени к продолжительности самого первого задана значением
kt =

tNt − tNt−1

t2 − t1
= 106;

— распределение узлов прямоугольных элементов по радиусу также подчиняется
согласно геометрической прогрессии (в центре диска, вблизи r = 0, расположены
прямоугольные элементы с наибольшей шириной, на краю диска r = R, — с наибольшей
шириной), отношение ширины крайнего конечного элемента к ширине элемента около
продольной оси задано значением kr =

rNr − rNr−1

r2 − r1
= 0.01;

— по высоте в пределах каждого слоя конечные элементы имеют одинаковую высоту.
В связи со столько значительными различиями в размерах используемых конечных

элементов задача очень чувствительна к многочисленным факторам. Для различных
сочетаний количества конечных элементов по радиусу hr и высоте hz выполнено
определение НДС для каждой задачи, результаты представлены в таблице 6.1.
Интенсивность внешнего усилия, растягивающее субстрат, неизменно и составляет
q = 10МПа.

Поскольку при некоторых допущения, связанных с толщиной адгезива по сравнению
с высотой всего изделия, задача обобщённо может быть представлена как случай
центрального растяжения (сжатия), то в упругой работе максимальная интенсивность
касательного напряжений τ должна стремиться к половине нормального напряжения в
продольном направлении, т. е.:

τmax =
σz

2
=

q

2
→ τmax ≈ 5МПа.
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В книге [144] говорится, что при разбиении по радиусу на интервалы, размеры которых
стремятся к нулю, максимальная интенсивность касательного напряжения стремится к
бесконечности — появляется сингулярность.

Возникновение сингулярности демонстрируется авторами вышеупомянутой книги
проф. А.С.Фрейдиным и проф. Р.А.Турусовым, в том числе, на основе аналитического
решения частным задач в упругой стадии. Данный факт также доказывается авторами
книги и при помощи аналитического решения в упругой стадии работы. Анализ
таблицы 6.1 показывает, что данный факт справедлив и в случае использования МКЭ
и наиболее оптимальный, близкий к теоретическому τ = 5МПа, результат был получен
τrz = 5.03МПа при hr = 50 и hz = 40, соответственно, данное количество конечных
элементов используется в дальнейшем при учёте деформаций ползучести в адгезиве.

С целью оценки достоверности полученных результатов проведено моделирование
адгезионного соединений в программном комплекса ANSYS в упругой стадии при hr = 50 и
hz = 40 (полученное распределение интенсивности касательных напряжений представлено
на рисунке 6.6). Моделирование осущствлялось двумя типами заложенных в ANSYS
конечных элементов: прямоугольными (тип 82) и треугольными (тип 2). Полученные
результаты в программном комплексе ANSYS полностью согласуются с представленными
ранее в таблице 6.1. При увеличении количества конечных элементов (уменьшении их
размера) наблюдалось «разрушение» мозаики интенсивности касательных напряжений, а
также возникала сингулярность.

а б

Рисунок 6.6 — Результаты расчёта касательных напряжений в программном комплексе ANSYS
модельной задачи адгезионного соединения в упругой стадии при форме ячеек сетки:

а — прямоугольной (тип 82); б — треугольной (тип 2)

Поскольку в теории пограничного слоя лежит идея о линейном распределении
интенсивности касательных напряжений по его высоте, решена модельная задача, в
которой адгезив представлен одним единственным конечным элементов вдоль оси z,
т. е. hz = 1; количество конечных элементов вдоль радиального направления составило
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hr = 2000. В результате максимальное значение интенсивности касательного напряжения
составила τrz = 2.24МПа. В разделе 6.1.4 результат решения задачи адгезионной прочности
при помощи пограничного слоя составил τrz = 2.32МПа. Незначительное расхождение
результатов объясняется несколькими факторами: разделение длины пограничного слоя
на равномерные отрезки, использование различных по длине конечных элементов при
решении задачи в двумерной постановке; при выводе основного разрешающего уравнения
относительно касательных напряжений в точке примыкания адгезива и субстрата в
методе пограничного слоя использован набор уравнений теории упругости, при решении
задачи с помощью МКЭ напряжения определяются в конкретном конечном элементе с
усреднением значений по нему. В целом, результаты обоих решений согласуются между
собой и можно сказать, что НДС пограничного элемента может быть описано единичным
конечным элементом.

Далее эта же задача моделировалась с учётом развития деформаций ползучести в
адгезиве при различных уровнях растягивающий внешних нагрузок (результаты расчёта
представлены на рисунках 6.7–6.8).

Приведённые ранее причины различия результатов, полученных при помощи метода
пограничного слоя и МКЭ, так же объясняют и различие в распределениях касательных
напряжений при различных уровнях нагружений.

При уровне нагружения q = 10МПа и q = 40МПа в решениях методом конечных
элементах наблюдается снижение максимального уровня напряжений по сравнению с
упругой стадией на первом шаге за счёт их релаксации по всему объёму адгезива, о чём
говорит график развития сдвиговых деформаций ползучести на рисунке 6.7.

В решении, полученном при помощи пограничного слоя, максимальный уровень
касательных напряжений, напротив, возрастал по сравнению в упругой стадией на первом
шаге. Кроме того, в методе пограничного слоя допускались внешние растягивающие
нагрузки лишь некоторым выше значения q = 30МПа и модель вырождается при уровне
усилия q = 40МПа. Решение при помощи МКЭ существует в данном режиме нагружения
и оно может быть получено даже при интенсивности внешней нагрузки q = 70МПа, однако
максимальная интенсивность растягивающего усилия всё равно асимптотически стремится
к некоторому конечному значению.

Далее рассматривалась модель адгезионного соединения в двумерной постановке с
учётом развития деформаций ползучести в адгезиве. Ранее было показано, что в упругой
стадии наилучшее согласование даёт моделирование 50 конечными элементами по радиусу
и 40 — по высоте (hr = 50, hz = 40). Результаты расчёта модельных задач представлены
на рисунках 6.9–6.10.
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Рисунок 6.7 — Изменение касательных напряжений τrz и сдвиговых деформаций γ в адгезиве с
течением времени при hz = 1: а, б — q = 10МПа; в, г — q = 40МПа; д, е — q = 70МПа; линии:
сплошная чёрная — полная деформация γ = γel + γcr; пунктирная синяя — упругая деформация

γel; штрихпунктирная красная — деформация ползучести γcr = γcr1 + γcr2
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Рисунок 6.8 — Изменение главных максимальных напряжений σ1 и минимальных напряжений σ3
в адгезиве с течением времени при hz = 1: а, б — q = 10МПа; в, г — q = 40МПа;

д, е — q = 70МПа
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Рисунок 6.9 — МКЭ: Изменение касательных напряжений τrz и сдвиговых деформаций γ в
адгезиве с течением времени при hz = 40: а, б — q = 10МПа; в, г — q = 50МПа;

д, е — q = 54.2МПа: линии: сплошная чёрная — полная деформация γ = γel + γcr; пунктирная
синяя — упругая деформация γel; штрихпунктирная красная — деформация ползучести

γcr = γcr1 + γcr2
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Рисунок 6.10 — МКЭ: Изменение главных максимальных напряжений σ1 и главных минимальных
напряжений σ3 в адгезиве с течением времени при hz = 40: а — q = 10МПа; б — q = 50МПа;

в — q = 54.2МПа
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Анализ изменения касательных напряжений на рисунке 6.9 при уровне
растягивающего нагружения q = 10МПа показывает такое же падение интенсивности
напряжений, как и в модели с единичным конечным элементом по высоте, до уровня
ниже, чем в упругой стадии на первом этапе. В дальнейшем с течением времени
интенсивность напряжений возрастает, превышает уровень на первом, упругом, этапе, но,
стремится асимптотически к некоторому конечному значению. На графиках касательных
напряжений при большем уровне растягивающего усилия q = 50МПа и q = 54.2МПа
наблюдается поэтапно: некоторое снижение интенсивности напряжений за счёт развития
неустановившейся ползучести с последующим значительным ростом уровня напряжений и,
в конце, частичная их релаксация. Интенсивность касательных напряжений в последний
момент времени оказывается лишь некоторым ниже максимально зафиксированного на
всём периоде значения.

Наибольшая величина внешнего усилия составила q = 54.2МПа. Данное значение
было получено рассмотрением различных диапазонов нагрузки q, при которой решение
не вырождалось; при данном уровне происходит резкое изменение значений главных
напряжений σ1 и σ3.

Подводя некоторый промежуточный итог, необходимо отметить, что рассмотренные
метод пограничного слоя при учёте развития деформаций ползучести в нём, МКЭ при
моделирование одним конечным элементом по высоте адгезива и полноценная двумерная
постановка, — находят между собой согласование в частных постановках задач, что может
говорить о достоверности полученных результатах, однако, коренным образом отличаются
от исследований [137, 138, 139, 144], в которых получен непрерывный рост интенсивности
касательных напряжений вплоть до разрушения адгезионного соединения. Причины этого
были рассмотрены ранее. Настоящая диссертационная работа является развитием методов,
приведённых в трудах [137, 138, 139, 144], их уточнением и расширением диапазона
исследований адгезионного соединения.

Благодаря проведённому моделированию в направлении двух осей r и z появляется
возможность провести анализ распределения интенсивности касательных напряжений в
плоскости этих осей (см. рисунок 6.11). Отчётливо видно, что в направлении оси r при
приближении к краю диска скорость роста интенсивности касательных напряжений носит
лавинообразный характер, имея при этом около нулевое значение по всей остальной толще.
Закон изменения напряжений по высоте, т. е. вдоль оси z, — нелинейный, что и объясняет
получение больших по значению напряжений при моделировании в двумерной постановке
по сравнению с методом пограничного слоя и МКЭ с одинарным по высоте конечным
элементом. При этом столько резкое увеличение интенсивности касательного напряжений
хорошо согласуется с трудами [137, 139, 138, 144], в которых говорится о возникновении
сингулярности в этом месте.

Вторым фактором, который может говорить о достоверности предложенных методик,
является решение при помощи линеаризации физических соотношений (см. раздел 2.1.3).
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Рисунок 6.11 — Модель адгезионного соединения в двумерной постановке: распределение
интенсивности касательных напряжений в адгезиве при q = 10МПа

На рисунке 6.12 представлены результаты решения линеаризованных задач при условии
η∗ = const = η∗0.

Отличие решения при линеаризации уравнения связи от нелинеаризованного
отчётливо видно графиках, где линеаризованное решение достигает несколько больших
значений интенсивности касательных напряжений, деформации ползучести проявляются
ранее, чем в нелинеаризованной задаче и, самое главное, отсутствует неустановившаяся
ползучесть. В предельном значении времени при t → ∞ решения по линеаризованной и
нелинеаризованной постановкам полностью сходятся между собой. Всё сказанное также
говорит в пользу достоверности полученных результатов.

6.3 Прочность адгезионного соединения при различных температурных режи-
мах

Согласно выражениям (2.63)–(2.65) физико–механические параметры эпоксидного
связующего ЭДТ–10 функционально сильно зависят от значения температуры тела,
следовательно, длительная прочность адгезионного соединения может значительно
измениться при изменении температурных условий. Проведено решение ряда модельных
задач при интенсивности внешнего растягивающего усилия q = 10МПа при следующих
значениях температуры изделия: 0, 10, 20 и 30℃. При бо́льших температурах значения
физико–механических параметров снижалось до такого уровня, что необходимо
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Рисунок 6.12 — Сравнение роста касательных напряжений, полученных по нелинеаризованной и
линеаризованной теориям в адгезиве с течением времени при hz = 40: а — q = 10МПа;

б — q = 50МПа; в — q = 54.2МПа

рассматривать уже использовать соотношения для учёта больши́х деформаций —
геометрической нелинейности — это предмет будущих исследований для развития темы
диссертации. Результаты определения сдвиговых напряжений в модельных задачах при
различных температурных режимах приведены на рисунке 6.13.

Анализ полученных данных при различных температурных режимах показал, что
интенсивность касательных напряжений при достаточно большом периоде времени
(t → ∞) отличается незначительно, так при температуре 10℃ τt→∞ ≈ 5.34МПа, а при 30℃
τt→∞ ≈ 5.28МПа. При этом температура значительно сказывается на периоде времени,
когда интенсивность касательных напряжений стабилизируется на своём конечном
значении, при этом в случае большей температуры стабилизация наступает раньше.
Так при температуре 10℃ напряжения стабилизируются примерно в момент времени
1.5 · 104 ч, а при температуре 30℃ — 0.2 · 104 ч. При температуре 0℃ напряжения так и не
стабилизировались, предполагаемый период времени выходит за расчётный интервал, но
характер кривой говорит о том, что стабилизация должна произойти.
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Рисунок 6.13 — Модель адгезионного соединения в двумерной постановке: кривые интенсивности
касательных напряжений при растягивающем усилии q = 10МПа и различных температурных

режимах: чёрная линия — 0℃; синяя линия — 10℃; красная линия — 20℃, зелёная линия — 30℃

6.4 Экспериментальная апробация расчётной модели

О достоверности предлагаемых решением можно говорить тогда, когда они
соответствуют опытным данным. Для этого были проведены эксперименты по испытанию
адгезионного соединения на прочность при различных растягивающих усилиях. Субстрат
был представлен выточенными алюминиевыми усечёнными цилиндрами (рисунок 6.14, а),
радиус которых в узкой части принят аналогично трудам [137, 139, 138, 144] R = 0.012м
(рисунок 6.14, б), изготовлено было 10 пар.

По сравнению с размерами субстрата, толщина адгезива очень мала, в расчётах
половина толщины имеет значение примерно h∗/2 = 0.09 · 10−3 м, следовательно, возникает
необходимость контроля точности изготовления субстрата, особенно тех поверхностей, на
которые будет наноситься адгезив. При помощи профилометра модели 130 (рисунок 6.15, а)
произведена оценка шероховатости поверхности субстрата, на которую наносится адгезив,
среднее арифметическое из абсолютных значений отклонений профиля в пределах базовой
длины Ra = 1.9295 · 10−6 м (рисунок 6.15, б), т. е. более чем на порядок меньше толщины
адгезива, следовательно, в конечно–элементной модели шероховатостью поверхности
субстрата можно пренебречь.

Адгезив представлен эпоксидным связующим ЭДТ–10, состав которого
КДА/ТЭАТ/Спирт/Ацетон в массовых соотношениях 50/5/30/15 (рисунок 6.16).
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Испытания проводились в лаборатории кафедры «Сопротивление материалов»
при помощи универсальной испытательной машины WP–300 и компьютерной системой
сбора и обработки данных GUNT (рисунок 6.17). Постоянство температурного режима
(T = 20℃) обеспечивалось проведением опытного исследования в климатической
камере НТКК-1.8/2/2. Изготовлено 10 алюминиевых образцов, представляющих собой
адгезионное соединение при помощи эпоксидного связующего ЭДТ–10 представленных
ранее алюминиевых дисков (рисунок 6.18).

Результатом проведённых испытаний и последующей обработки полученных
данных явилась средняя интенсивность внешнего нагружения F = 4.9 кН, при которой
происходило разрушение адгезионного соединения (рисунок 6.19, а, б). Моделирование
адгезионного соединения с учётом реальных образцов показало, что интенсивность
максимального касательного напряжения в адгезиве в момент разрушения составляет
τadhezive = 4.10МПа. Следовательно, это значение принято за критический уровень,
превышение которого приводит к разрушению изделия.

Проведено моделирование ряда нагружений, растягивающее усилие в которых
уменьшается от предельного уровня F = 4.9 кН на шаг 0.05 кН. Столько малый
интервал изменения растягивающей нагрузки выбран для того, чтобы время развития
деформаций ползучести с последующим разрушением образца не превышало 1 суток. Как
только в моделе интенсивность касательного нагружения достигало предельного уровня
τadhezive = 4.10МПа считалось, что образец разрушается, фиксируется теоретический
момент времени, когда это происходит. Составлена таблица с предполагаемым временем
разрушения изделий (см. таблицу 6.2).

Таблица 6.2 — Результаты сопоставления теоретических моментов времени разрушения
адгезионного соединения с фактическими опытными данными

Проведены эксперименты с нагрузками, при которых проводилось ранее
моделирование адгезионного соединения. Фактические моменты времени разрушения
изделия сопоставлены с теоретическими из таблицы 6.2.

Сопоставляя теоретическое время разрушения с фактическим видно их согласование с
максимальной погрешностью в 11% при приложении наименьшего растягивающего усилия
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F = 4.60 кН. Объяснено это может быть многочисленными причинами: необходимостью
использования более чувствительного оборудования для получения максимально точных
зависимостей физико–механических параметров полимера, необходимостью использования
более совершенного оборудования для снятия показаний при проведении экспериментов
на нормальных отрыв, необходимостью в увеличении количества экспериментальных
исследований, возникновение дефектов при заливке образцов эпоксидным связующим
ЭДТ–10 с последующей усадкой в сушильном шкафу и т. д. Однако, несмотря на
столько возможных причин возникновения погрешностей, опытные данные достаточно
хорошо согласуются с теоретическими предсказаниями, что говорит о достоверности
предложенных моделей.

Подводя итог по моделированию адгезионного соединения, необходимо отметить
некоторые допущения и недостатки, которые желательно учесть в будущим исследованиях.

Экспериментальные данные ограничивались 24 часами, а второй «младший» спектр
времён релаксации полимера начинает себя проявлять минимум через 100 часов после
нагружения изделия. Следовательно, заложенная в модель возможность учёта обоих
спектров времён релаксации полимера не использована в полном объёме.

Экспериментальные исследования ограничены одним температурным режимом
T = 20℃, теоретические модели предусматривают возможность задания иных значений
температуры.

В качестве критического параметра, при котором происходит разрушение
адгезионного соединения, использован единственный параметр — значение касательного
напряжения в самом нагруженном конечном элементе адгезива. На основе этого
предсказано теоретическое время разрушения. Возможно проведение исследований с
учётом иных критериев: максимального уровню деформаций в адгезиве, анализ главных
напряжений и т. д. Однако, подобные исследования требуют наличия специализированного
лабораторного оборудования, цена которого весьма велика. Подобные исследования
выходят за рамки настоящей диссертационной работы.
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Рисунок 6.14 — Алюминиевая болванка (а) и заготовки из неё (б)
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Рисунок 6.15 — Определение шероховатости поверхности цилиндрических образцов:
а — профилометр модели 130; б — проведение испытания
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Рисунок 6.16 — Эпоксидная смола и отвердитель для проведения испытания
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Рисунок 6.17 — Универсальная испытательная машина WP-300 с компьютерной системой сбора и
обработки данных GUNT
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Рисунок 6.18 — Начало проведения эксперимента
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Рисунок 6.19 — Результат проведения эксперимента: уровень нагрузки в момент
разрушения, кН (а) и адгезионное разрушение на поверхности алюминиевых образцов (б)
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6.5 Выводы по главе

1. Развита модель адгезионного соединения, в которой учитывается развитие
сдвиговых деформаций ползучести.

2. Впервые на основе разработанного прямоугольного конечного элемента проведено
моделирование адгезионного соединения в двумерной постановке, качественная картина
полученных результатов значительно отличается от использованных ранее решений,
приводимых к одномерной постановке.

3. Доказано, что количественно оценка длительной прочности может быть проведена
при помощи линеаризации уравнения состояния. Для более точной качественной оценки
необходимо использовать уравнение состояния без линеаризации.

4. Сделан вывод, что максимальное значение касательных напряжений практически
не зависит от температурного режима, а значение температуры определяет время, при
котором наблюдается стабилизация уровня касательных напряжений на своём конечном
значении.

5. Экспериментально доказана достоверность предлагаемой математической конечно–
элементной модели по расчёту длительной прочности адгезионного соединения на
нормальный отрыв.
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Заключение
Итоги выполненного исследования:
1. На основе аналитического обзора открытых источников публикаций развито

научно–теоретическое представление в области расчёта термовязкоупругих тел, а также
обобщены некоторые существующие экспериментальные данные с теоретическими
исследованиями, включая общую постановку задач.

2. На основе разработанной методики определения физико–механических параметров
уравнения Максвелла–Гуревича в результате обработки кривых релаксации материала
получены коэффициенты:

— для эпоксидного связующего ЭДТ–10 — как функции от начальной деформации
и температуры;

— для вторичного ПВХ — как функции от температуры;
— для ПЭВП — как функции от доли добавки гидроксиапатита и уровня

ионизирующего излучения.
3. Экстраполирована методика определения физико–механических параметров

материала, входящих в обобщённое уравнение Максвелла–Гуревича, на элементы
конструкций из бетона.

4. Проведено решения ряда модельных задач по оптимизации толстостенных
цилиндров:

— В результате моделирования НДС полимерного цилиндра с поиском оптимального
закона распределения гидроксиапатита по радиусу, доказано, что возможно получение
равнонапряжённого в конце процесса ползучести цилиндра по всем четырём теориям
прочности, со снижением в пределах 30% максимального уровня напряжения по сравнению
с неоптимизированным цилиндром.

— На основе двумерной модели решена задача неоднородного цилиндра из ПЭВП под
действием внешним осевого давления. Моделирование продемонстрировало значительное
снижение ползучести в теле в гораздо более короткий промежуток времени для материала
с наибольшим уровнем ионизирующего излучения и введением добавок.

— На основе оптимизации решения модельной задачи определения НДС цилиндра из
полимербетона на основе фурфуролацетоновой смолы становится возможным снижение
максимального уровня напряжений примерно до 45%.

5. Решена модельная задача об изменении НДС цилиндрического радиационно-
теплового экрана под действием температурного поля, вызванного радиационным
разогревом материала.

6. Реализован в пакете программных модулей прямоугольный КЭ при помощи
непосредственного интегрирования заданной функции формы, вектор нагрузок которого
содержит вклад вынужденных деформаций для практического применения при решении
задач ползучести. Проведение ряда оптимизационных решений позволило достичь
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точности полученного 4-узлового КЭ на уровне не ниже аналогичного 9-узлового
численного КЭ

7. Решена модельная задача по определению НДС неоднородного цилиндра конечной
длины, извлекаемого из экструдера с учётом теплообмена на границе с окружающей средой
при разных вариантах скорости извлечения, которая показала низкий уровень остаточных
напряжений, возникающих в теле при полном его охлаждении.

8. Усовершенствованы модели длительной прочности адгезионного соединения в
двумерной постановке с учётом развития сдвиговых деформаций ползучести во времени,
результатом стало уточнение существующих одномерных моделей по оценке длительной
прочности в которых развитием сдвиговых деформаций ползучести пренебрегалось. Новые
модели показали, что критический уровень прочности подобного соединения оказывается
гораздо ниже, чем в случае одномерных моделей, при этом деформация ползучести не
может развиваться выше некоторого предельного значения.

9. На примере натурного испытания модели адгезионного соединения предложен
подход к эспериментально–теоретической оценке длительной прочности модели
адгезионного соединения.
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Глава А. Условные обозначения и основные математические
операции

А.1 Условные обозначения

∇Φ(r, θ, z) = gradΦ(r, θ, z) =
∂Φ

∂r
e⃗r +

1

r

∂Φ

∂θ
e⃗θ +

∂Φ

∂z
e⃗z.

∆Φ = ∇Φ · ∇Φ = ∇2Φ =
1

r

∂

∂r

(
r
∂Φ

∂r

)
+

1

r2
∂2Φ

∂θ2
+

∂2Φ

∂z2
.

div (gradΦ) = ∇ · (∇Φ) = ∇2Φ = ∆Φ

А.2 Дифференцирование матричных соотношений

Процедуры минимизации, рассмотренные в диссертационной работе, подразумевают
дифференцирование матричных произведений [127]

NΦ и ΦTAΦ

по Φ. Здесь N — вектор-строка; A — квадратная матрица.
Пусть значение скалярной величины определяется соотношением:

φ = NΦ, (А.1)

где N =
[
N1 N2 . . . Nr

]
, ΦT =

[
Φ1 Φ2 . . . Φr

]
.

Тогда производная φ по Φ может быть записана вектор-столбцом:

∂φ

∂Φ
=



∂φ

∂Φ1
∂φ

∂Φ2...
∂φ

∂Φr


. (А.2)

Элементы вектор-столбца (А.2) вычисляются при помощи записанного в развёрнутом
виде произведения (А.1):

φ = N1Φ1 +N2Φ2 + . . .+NrΦr. (А.3)

Проводя операцию дифференцирования выражения (А.3), получаем:

∂φ

∂Φ1

= N1,
∂φ

∂Φ2

= N2, . . . ,
∂φ

∂Φr

= Nr. (А.4)
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После подстановки полученных выражений в (А.2):

∂φ

∂Φ
=


N1

N2

...
Nr

 = NT . (А.5)

Операция дифференцирования выражения ΦTNT проводится аналогичным образом
и результат приводит к тому же самому выражению.

При выводе уравнений метода конечных элементов, с целью сохранения размерности
полученных выражений, можно записать следующие правила дифференцирования:

пусть φ1 = UTBTDεвын и φ2 = εTвынDBU

c учётом правила транспонирования матриц (ABC)T = CTBTAT , дифференциал
принимает вид

∂φ1

∂U =
∂φ2

∂U = BTDεвын. (А.6)

Здесь принималось, что матрица D — симметричная, т. е. D = DT .
В случае, если рассматривается произведение

φ = ΦTAΦ,

где

A =

[
a11 a12

a21 a2

]
и ΦT =

{
Φ1 Φ2

}
,

можно записать c учётом условия симметрии a12 = a21

φ = a11Φ
2
1 + 2a12Φ1Φ2 + a22Φ

2
2.

Тогда в процесс дифференцирования получаются выражения:

∂φ

∂Φ1

= 2a11Φ1 + 2a12Φ2;
∂φ

∂Φ2

= 2a21Φ1 + 2a22Φ2.

Окончательно в матричном виде

∂φ

∂Φ
= 2

[
2a11Φ1 + 2a12Φ2

2a21Φ1 + 2a22Φ2

]
= 2

[
a11 a12

a21 a22

]{
Φ1

Φ2

}

или
∂φ

∂Φ

(
ΦTAΦ

)
= 2AΦ. (А.7)
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Глава Б. Значения коэффициентов выражений (5.20) и (5.21)
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Глава В. Свидетельства регистрации программ ЭВМ
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Глава Г. Внедрения результатов работы
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